
Universidad Autonoma de Sinaloa

INGENIERIA EN

TELECOMUNICACIONES, SISTEMAS Y

ELECTRONICA

Asignatura:

Microcontroladores

Reporte

Asesor:

José Gabriel Zúñiga Tapia

Autores:

Angel Daniel Zanahua Soto

Cristian Alexis Lopez Bernal

José Luis Rubio Manjarrez

Grupo 4-1

JUNIO 2024

Contents

1 Descripcion de proyecto 2

2 Documentacion de componentes 2
2.1 PIC16F628A . 2
2.2 PIC18F4550 . 3
2.3 Modulos RF de 433Mhz . 4

2.3.1 FS1000A . 4
2.3.2 XY-MK-5V . 5
2.3.3 Modulación por desplazamiento de amplitud 5

3 Implementacion 6
3.1 Transmisor . 6
3.2 Receptor . 7
3.3 Simulacion en Proteus . 14
3.4 Implementacion Fisica . 15
3.5 Transmisor . 15
3.6 Receptor . 15

4 Referencias 16

1

1 Descripcion de proyecto

Consiste en dos modulos, transmisor y receptor. El modulo consiste en un
PIC16F628A enviando datos seriales a 4800 baudios usando un transmisor
RF. El modulo receptor consiste en un PIC18F4550 que se encarga de mane-
jar 8 display de 7 segmentos por medio de multiplexacion, lo que representa
cada display y sus funciones se hace interpretando los datos que recibe por
serial, los cuales se interpretan como valores que cambian o para inicio de
contadores

2 Documentacion de componentes

2.1 PIC16F628A

El Microcontrolador PIC16F628A cuenta con 8 Bits, 3.5KB, 224 RAM,
4MHz, 18 Pines. Compatible con el PIC16F628, PIC16C62XA , PIC16C5X
y PIC12CXXX. Tecnoloǵıa en Flash/EEPROM CMOS.

Cuenta con modo de ahorro de enerǵıa en modo sueño, resistencias pro-
gramable pul-ups del PORTB , multiplexado del pin reset/Entrada-pin, tem-
porizador Watchdog

� Familia : PIC16F

� Voltaje de operación: 3.5V a 5.5V

� Capacidad de memoria de programa: 3.5KB (2K a 14 bits)

� RAM: 224 bytes

� SRAM: 256 bytes

� EEPROM: 128 bytes a 8 bits

� I/O disponibles: 16 pines

� ADC: No

� Comparadores : 2

� Timer: 2 de 8 bit y 1 de 16 bit

2

� Frecuencia Máxima : 20 MHz

� Oscilador Interno: 4 MHz

� Comunicación: USART/UART

2.2 PIC18F4550

El Microcontrolador PIC18F4550 es un circuito integrado programable capaz
de poder realizar y controlar tareas las veces que desees gracias a la memoria
flash de alta resistencia. El MCU cuenta con 8 Bits, 48 MHz, 32 KB, 2 KB,
40 Pines y pertenece a la familia de microcontroladores PIC18.

Espe cificaciones

� Familia : PIC18

� Modelo: PIC18F4550-I/P

� Voltaje de operación: 4.2V a 5.5V

� Comunicación : UART, A/E/USART, SPI, I²C, MSSP (SPI/I²C)

� Interfaz : USB 2.0 de alta velocidad (12 Mbit/s)

� Pines: 40

� ADC de 10 bits: 13 canales

� I/O disponibles: 35 pines

� Comparadores Analógicos: 2

� EEPROM: 256 Bytes

� Memoria Flash: 32Kb

� Memoria de datos SRAM: 2048 Bytes

� Máxima frecuencia de trabajo: 48 MHz

3

2.3 Modulos RF de 433Mhz

Los módulos RF de 433Mhz de bajo costo y fácil uso. Vienen en pareja,
emisor (FS1000A) y receptor (XY-MK-5V), el tipo de comunicación es sim-
plex, es decir en un solo canal y unidireccional, son de baja velocidad de
transmisión pero para aplicaciones básicas son muy útiles.

2.3.1 FS1000A

Este módulo sirve como transmisor. En el núcleo del módulo hay un reson-
ador SAW sintonizado para funcionar a 433 MHz. Aparte de eso, tiene un
transistor de conmutación y algunos componentes pasivos.

Cuando la entrada de DATOS es alta, el oscilador genera una onda por-
tadora de salida de RF constante a 433 MHz, y cuando la entrada de DATOS
es baja, el oscilador deja de funcionar; dando como resultado una onda de
amplitud modulada. Esta técnica se conoce como modulación por desplaza-
miento de amplitud.

4

2.3.2 XY-MK-5V

Este módulo es el receptor. Consiste en un circuito sintonizado por RF y
un par de amplificadores operacionales (OP Amps) que amplifican la onda
portadora recibida. Luego, la señal amplificada se env́ıa a un PLL, que
permite que el decodificador se ”bloquee” en un flujo de bits digitales, lo
que da como resultado una salida decodificada mejorada y una inmunidad al
ruido.

2.3.3 Modulación por desplazamiento de amplitud

La modulación por desplazamiento de amplitud, en inglés Amplitude-shift
keying (ASK), es una forma de modulación en la cual se representan los datos
digitales como variaciones de amplitud de la onda portadora en función de
los datos a enviar.

La amplitud de una señal portadora analógica vaŕıa conforme a la corri-
ente de bit (modulando la señal), manteniendo la frecuencia y la fase con-
stante. El nivel de amplitud puede ser usado para representar los valores
binarios 0 y 1. Podemos pensar en la señal portadora como un interruptor
ON/OFF. En la señal modulada, el valor lógico 0 es representado por la
ausencia de una portadora, aśı que da ON/OFF la operación de pulsación y
de ah́ı el nombre dado.

5

3 Implementacion

3.1 Transmisor

1 #include <16F628A.h>

2 #device ADC=16

3 #FUSES NOWDT , NOMCLR , NOBROWNOUT , NOLVP

4 #use delay(internal =4MHz)

5 #define boton1 PIN_A0

6 #define boton2 PIN_A1

7 #define boton3 PIN_A2

8 #define boton4 PIN_A3

9 #define boton5 PIN_A4

10 #define boton6 PIN_A5

11 #define boton7 PIN_A6

12 //#define boton8 PIN_A7

13

14 #use rs232(baud =4800 , parity=N,xmit=PIN_B2 ,rcv=PIN_B1 ,bits=8,

stream=PORT1 ,errors)

15

16 void main() {

17 while(TRUE){

18 if(input(boton1)){

19 putc(’a’);

20 }

21 if(input(boton2)){

22 putc(’b’);

23 }

24 if(input(boton3)){

25 putc(’c’);

26 }

27 if(input(boton4)){

28 putc(’d’);

29 }

30 if(input(boton5)){

31 putc(’e’);

32 }

33 if(input(boton6)){

34 putc(’f’);

35 }

36 if(input(boton7)){

37 putc(’z’);

38 }

39 }

40 }

6

3.2 Receptor

1 #include <18F4550.h>

2 #device ADC=16

3

4 #FUSES NOWDT //No Watch Dog Timer

5 #FUSES WDT128 //Watch Dog Timer uses 1:128

Postscale

6 #FUSES NOFCMEN //Fail -safe clock monitor

disabled

7 #FUSES NOBROWNOUT //No brownout reset

8 #FUSES NOMCLR // Master Clear pin used for I

/O

9 #FUSES NOLVP //No low voltage prgming , B3(

PIC16) or B5(PIC18) used for I/O

10 #FUSES NOXINST // Extended set extension and

Indexed Addressing mode disabled (Legacy mode)

11

12 #use delay(crystal =20Mhz)

13 #use FIXED_IO(D_outputs=PIN_D7 ,PIN_D6 ,PIN_D5 ,PIN_D4 ,PIN_D3 ,

PIN_D2 ,PIN_D1 ,PIN_D0)

14 #use FIXED_IO(A_outputs=PIN_A1)

15

16 #define dig1a PIN_D0 //local

17 #define dig2a PIN_D1 // sdec --

18 #define dig1b PIN_D2 //vis

19 #define dig2b PIN_D3 //per

20 #define dig1c PIN_D4 // suni --

21 #define dig2c PIN_D5

22 #define dig3c PIN_D6

23 #define dig4c PIN_D7

24

25 #define led PIN_A1

26

27 #use rs232(baud =4800 , parity=N,xmit=PIN_C6 ,rcv=PIN_C7 ,bits=8,

stream=PORT1 ,errors) //xmit=PIN_C1 ,rcv=PIN_C0

28

29 int timer = 0;

30 int reloj = 0;

31 int min = 0;

32 int per = 0;

33 int shot = 0;

34 int local = 0;

35 int vis = 0;

36 int unidades = 0;

7

37 int decenas = 0;

38 int sreloj = 0;

39 int suni = 0;

40 int sdec =0;

41 int reset = 0;

42

43 #int_timer0

44 void timer0_isr () {

45

46 if(timer >0){

47 reloj ++;

48 per = min + 1;

49 if(shot >0 && shot <2){

50 sreloj ++;

51 }

52 }

53 set_timer0 (26473);

54 }

55

56 int display [10] = {0x3F ,0x06 ,0x5B ,0x4F ,0x66 ,0x6D ,0x7D ,0x07 ,0

x7F ,0x6F};

57 int display2 [10] = {0xC0 ,0xF9 ,0xA4 ,0xB0 ,0x99 ,0x92 ,0x82 ,0xF8 ,0

x80 ,0x90};

58

59 char dato_rx;

60

61 void main() {

62 setup_timer_0(RTCC_INTERNAL|RTCC_DIV_128); //1600 ms

overflow

63

64 enable_interrupts(INT_TIMER0);

65 enable_interrupts(GLOBAL);

66 set_timer0 (26473);

67

68 set_tris_b (0x00);

69

70 while(TRUE){

71 if(kbhit()){

72 dato_rx = getch(); //if(kbhit() >0) Verifica si ha

recibido un dato por el puerto serial

73 switch(dato_rx)

74 {

75 case ’a’:

76 local ++;

77 putc(’a’);

8

78 delay_ms (16);

79 break;

80

81 case ’b’:

82 local --;

83 delay_ms (16);

84 break;

85

86 case ’c’:

87 vis++;

88 delay_ms (16);

89 break;

90

91 case ’d’:

92 vis --;

93 delay_ms (16);

94 break;

95

96 case ’e’:

97 timer ++;

98 break;

99

100 case ’f’:

101 reset ++;

102 timer = 0;

103 local = 0;

104 vis = 0;

105 per = 0;

106 min = 0;

107 reloj= 0;

108 unidades = 0;

109 decenas = 0;

110 shot =0;

111 sreloj =0;

112 break;

113

114 case ’z’:

115 shot ++;

116 delay_ms (16);

117 break;

118 }

119 }

120 unidades=reloj %10;

121 decenas =(reloj /10) %10;

122

9

123 output_low(dig1a);

124 output_high(dig1b);

125 output_high(dig2b);

126 output_low(dig2c);

127 output_low(dig3c);

128 output_low(dig4c);

129 output_high(dig2a);

130 output_high(dig1c);

131 output_b(display[local]);

132 delay_ms (3);

133

134 output_high(dig1a);

135 output_low(dig1b);

136 output_high(dig2b);

137 output_low(dig2c);

138 output_low(dig3c);

139 output_low(dig4c);

140 output_high(dig2a);

141 output_high(dig1c);

142 output_b(display[vis]);

143 delay_ms (3);

144

145 output_high(dig1a);

146 output_high(dig1b);

147 output_low(dig2b);

148 output_low(dig2c);

149 output_low(dig3c);

150 output_low(dig4c);

151 output_high(dig2a);

152 output_high(dig1c);

153 output_b(display[per]);

154 delay_ms (3);

155

156 output_high(dig1a);

157 output_high(dig1b);

158 output_high(dig2b);

159 output_high(dig2c);

160 output_low(dig3c);

161 output_low(dig4c);

162 output_high(dig2a);

163 output_high(dig1c);

164 output_b(display2[min]);

165 delay_ms (3);

166

167 output_high(dig1a);

10

168 output_high(dig1b);

169 output_high(dig2b);

170 output_low(dig2c);

171 output_high(dig3c);

172 output_low(dig4c);

173 output_high(dig2a);

174 output_high(dig1c);

175 output_b(display2[decenas]);

176 delay_ms (3);

177

178 output_high(dig1a);

179 output_high(dig1b);

180 output_high(dig2b);

181 output_low(dig2c);

182 output_low(dig3c);

183 output_high(dig4c);

184 output_high(dig2a);

185 output_high(dig1c);

186 output_b(display2[unidades]);

187 delay_ms (3);

188

189 suni=sreloj %10;

190 sdec=(sreloj /10) %10;

191

192 output_high(dig1a);

193 output_high(dig1b);

194 output_high(dig2b);

195 output_low(dig2c);

196 output_low(dig3c);

197 output_low(dig4c);

198 output_low(dig2a);

199 output_high(dig1c);

200 output_b(display[suni]);

201 delay_ms (3);

202

203 output_high(dig1a);

204 output_high(dig1b);

205 output_high(dig2b);

206 output_low(dig2c);

207 output_low(dig3c);

208 output_low(dig4c);

209 output_high(dig2a);

210 output_low(dig1c);

211 output_b(display[sdec]);

212 delay_ms (3);

11

213

214 if(local > 9){

215 local = 0;

216 }

217 if(vis > 9){

218 vis = 0;

219 }

220 if(per > 5){

221 per = 0;

222 min = 0;

223 timer = 0;

224 }

225 if(sreloj > 24){

226 sreloj =0;

227 sreloj =88;

228 }

229 if(shot >1){

230 shot =0;

231 sreloj =0;

232 suni = 0;

233 sdec =0;

234 }

235 if(reloj > 59){

236 reloj =0;

237 min ++;

238 per = min + 1;

239 }

240 if(reset >0){

241 reset = 0;

242 timer = 0;

243 local = 0;

244 vis = 0;

245 per = 0;

246 min = 0;

247 reloj= 0;

248 unidades = 0;

249 decenas = 0;

250 shot = 0;

251 sreloj =0;

252 suni = 0;

253 sdec =0;

254 }

255 }

256 }

12

3.3 Simulacion en Proteus

13

3.4 Implementacion Fisica

3.5 Transmisor

3.6 Receptor

14

4 Referencias

https://lastminuteengineers.com/433mhz-rf-wireless-arduino-tutorial/

https://www.youtube.com/watch?v=9-JsrJU3cwU&list=PLONPO-iVba9nbY_

KTCHt9GGj9dGSj1qYo&index=31&pp=iAQB

https://www.youtube.com/watch?v=MEIuWy9-nn4&list=PLONPO-iVba9nbY_

KTCHt9GGj9dGSj1qYo&index=32&t=247s&pp=iAQB

15

https://lastminuteengineers.com/433mhz-rf-wireless-arduino-tutorial/
https://www.youtube.com/watch?v=9-JsrJU3cwU&list=PLONPO-iVba9nbY_KTCHt9GGj9dGSj1qYo&index=31&pp=iAQB
https://www.youtube.com/watch?v=9-JsrJU3cwU&list=PLONPO-iVba9nbY_KTCHt9GGj9dGSj1qYo&index=31&pp=iAQB
https://www.youtube.com/watch?v=MEIuWy9-nn4&list=PLONPO-iVba9nbY_KTCHt9GGj9dGSj1qYo&index=32&t=247s&pp=iAQB
https://www.youtube.com/watch?v=MEIuWy9-nn4&list=PLONPO-iVba9nbY_KTCHt9GGj9dGSj1qYo&index=32&t=247s&pp=iAQB

	Descripcion de proyecto
	Documentacion de componentes
	PIC16F628A
	PIC18F4550
	Modulos RF de 433Mhz
	FS1000A
	XY-MK-5V
	Modulación por desplazamiento de amplitud

	Implementacion
	Transmisor
	Receptor
	Simulacion en Proteus
	Implementacion Fisica
	Transmisor
	Receptor

	Referencias

