Universidad Autonoma de Sinaloa

INGENIERIA EN
TELECOMUNICACIONES, SISTEMAS Y
ELECTRONICA

Asignatura:
Maicrocontroladores

REPORTE

Asesor:
José Gabriel Zuniga Tapia

Autores:
Angel Daniel Zanahua Soto
Cristian Alexis Lopez Bernal
José Luis Rubio Manjarrez

Grupo 4-1
JUNIO 2024

Contents

1 Descripcion de proyecto

2 Documentacion de componentes

2.1 PICI6F628A o
2.2 PICISF4550 e
2.3 Modulos RF de 433Mhz
2.3.1 FSI000A
2.3.2 XY-MK-5V
2.3.3 Modulaciéon por desplazamiento de amplitud

3 Implementacion

3.1 Transmisor

3.2 Receptor
3.3 Simulacion en Proteus L.
3.4 Implementacion Fisica

3.5 Transmisor
3.6 Receptor .

4 Referencias

1 Descripcion de proyecto

Consiste en dos modulos, transmisor y receptor. El modulo consiste en un
PIC16F628A enviando datos seriales a 4800 baudios usando un transmisor
RF. El modulo receptor consiste en un PIC18F4550 que se encarga de mane-
jar 8 display de 7 segmentos por medio de multiplexacion, lo que representa
cada display y sus funciones se hace interpretando los datos que recibe por
serial, los cuales se interpretan como valores que cambian o para inicio de
contadores

2 Documentacion de componentes

2.1 PIC16F628A

El Microcontrolador PIC16F628A cuenta con 8 Bits, 3.5KB, 224 RAM,
4MHz, 18 Pines. Compatible con el PIC16F628, PIC16C62XA , PIC16C5X
y PIC12CXXX. Tecnologia en Flash/EEPROM CMOS.

Cuenta con modo de ahorro de energia en modo suenio, resistencias pro-
gramable pul-ups del PORTB , multiplexado del pin reset/Entrada-pin, tem-
porizador Watchdog

e Familia : PIC16F

e Voltaje de operacion: 3.5V a 5.5V

e Capacidad de memoria de programa: 3.5KB (2K a 14 bits)
e RAM: 224 bytes

e SRAM: 256 bytes

e EEPROM: 128 bytes a 8 bits

e 1/0O disponibles: 16 pines

e ADC: No

e Comparadores : 2

e Timer: 2 de 8 bit y 1 de 16 bit

2.2

Frecuencia Maxima : 20 MHz
Oscilador Interno: 4 MHz
Comunicacién: USART/UART

PIC18F4550

El Microcontrolador PIC18F4550 es un circuito integrado programable capaz
de poder realizar y controlar tareas las veces que desees gracias a la memoria
flash de alta resistencia. El MCU cuenta con 8 Bits, 48 MHz, 32 KB, 2 KB,
40 Pines y pertenece a la familia de microcontroladores PIC18.

Espe cificaciones

Familia : PIC18

Modelo: PIC18F4550-1/P

Voltaje de operacion: 4.2V a 5.5V
Comunicacién : UART, A/E/USART, SPI, I?C, MSSP (SPI/I?C)
Interfaz : USB 2.0 de alta velocidad (12 Mbit/s)
Pines: 40

ADC de 10 bits: 13 canales

I/O disponibles: 35 pines

Comparadores Analdgicos: 2

EEPROM: 256 Bytes

Memoria Flash: 32Kb

Memoria de datos SRAM: 2048 Bytes

Maéxima frecuencia de trabajo: 48 MHz

2.3 Modulos RF de 433Mhz

Los moédulos RF de 433Mhz de bajo costo y facil uso. Vienen en pareja,
emisor (FS1000A) y receptor (XY-MK-5V), el tipo de comunicacion es sim-
plex, es decir en un solo canal y unidireccional, son de baja velocidad de
transmision pero para aplicaciones basicas son muy ttiles.

2.3.1 FS1000A

Este moédulo sirve como transmisor. En el nticleo del médulo hay un reson-
ador SAW sintonizado para funcionar a 433 MHz. Aparte de eso, tiene un

transistor de conmutacién y algunos componentes pasivos.
Antenna

Switching
Transister

433 MHz
Saw Resonator

- Data In
Cuando la entrada de DATOS es alta, el oscilador genera una onda por-
tadora de salida de RF constante a 433 MHz, y cuando la entrada de DATOS
es baja, el oscilador deja de funcionar; dando como resultado una onda de
amplitud modulada. Esta técnica se conoce como modulacién por desplaza-
miento de amplitud.

2.3.2 XY-MK-5V

Este moédulo es el receptor. Consiste en un circuito sintonizado por RF y
un par de amplificadores operacionales (OP Amps) que amplifican la onda
portadora recibida. Luego, la senal amplificada se envia a un PLL, que
permite que el decodificador se ”"bloquee” en un flujo de bits digitales, lo
que da como resultado una salida decodificada mejorada y una inmunidad al
ruido.

Antenna

Data Out

RF
Tuner Circuit

Phase Locked
Loop (PLL)

Amplifier

2.3.3 Modulacién por desplazamiento de amplitud

La modulacién por desplazamiento de amplitud, en inglés Amplitude-shift
keying (ASK), es una forma de modulacién en la cual se representan los datos
digitales como variaciones de amplitud de la onda portadora en funciéon de
los datos a enviar.

oiraons —— | [R

Amplitude
Modulated
Wave

La amplitud de una senal portadora analdgica varia conforme a la corri-
ente de bit (modulando la senal), manteniendo la frecuencia y la fase con-
stante. El nivel de amplitud puede ser usado para representar los valores
binarios 0 y 1. Podemos pensar en la senal portadora como un interruptor
ON/OFF. En la senal modulada, el valor lgico 0 es representado por la
ausencia de una portadora, asi que da ON/OFF la operacién de pulsacién y
de ahi el nombre dado.

3 Implementacion

3.1 Transmisor

#include <16F628A.h>

#device

ADC=16

#FUSES NOWDT,

#tdefine
#define
#tdefine
#define
#tdefine
#tdefine
#tdefine

//#define boton8

#use rs232(baud=4800,parity=N,xmit=PIN_B2,rcv=PIN_B1,bits=8,

botonil
boton2
boton3
boton4
botonb
boton6
boton7

NOMCLR,
#use delay(internal=4MHz)

PIN_AO
PIN_A1
PIN_A2
PIN_A3
PIN_A4
PIN_AS5
PIN_AG6

PIN_A7

stream=P0ORT1,errors)

void main() {

while (TRUE) {

if (input (boton1)){
putc(’a’);

}

if (input (boton2)){
putc(’b’);

}

if (input (boton3)){
putc(’c’);

}

if (input (boton4d)){
putc(’d’);

}

if (input (boton5)){
putc(’e’);

}

if (input (boton6)){
putc(’f7’);

}

if (input (boton7)){
putc(’z’);

}

NOBROWNOUT ,

3.2 Receptor

| #include <18F4550.h>
#tdevice ADC=16

10

#FUSES NOWDT
#FUSES WDT128

Postscale
#FUSES NOFCMEN

disabled
#FUSES NOBROWNOUT
#FUSES NOMCLR

/0

#FUSES NOLVP
PIC16) or B5(PIC18) used for I/O
#FUSES NOXINST
Indexed Addressing mode disabled (Legacy mode)

//No Watch Dog Timer
//Watch Dog Timer uses 1:128

//Fail-safe clock monitor

//No brownout reset
//Master Clear pin used for I

//No low voltage prgming, B3(

//Extended set extension and

#use delay(crystal =20Mhz)

#use FIXED_IO(D_outputs=PIN_D7 ,PIN_D6,PIN_D5,PIN_D4,PIN_D3,
PIN_D2,PIN_D1,PIN_DO)

#use FIXED_IO(A_outputs=PIN_A1)

; #define

#tdefine
#tdefine
#tdefine
#tdefine
#tdefine
#tdefine
#tdefine

#define

int timer
int reloj

int min
int per

int shot ;
int local = 0;

int vis

digla
dig2a
digilb
dig2b
diglc
dig2c
dig3c
digélc

led

’

O O

= 0:

=O;

int unidades

0.
O.

PIN_DO
PIN_D1
PIN_D2
PIN_D3
PIN_D4
PIN_D5
PIN_D6
PIN_D7

PIN_A1

>

>

)

= O;

//local

// sdec --
//vis
//per

// suni --

- #use rs232(baud=4800,parity=N,xmit=PIN_C6 ,rcv=PIN_C7 ,bits=8,
stream=P0ORT1,errors)

//xmit=PIN_C1,rcv=PIN_CO

7 int decemnas = 0;

int sreloj = O0;
int suni = O0;
int sdec =0;

int reset = 0;

; #int_timerO

void timerO_isr () {

if (timer >0) {

reloj++;
per = min + 1;
if (shot >0 && shot<2){
sreloj++;
3
X

set_timer0 (26473) ;
}

int display[10] = {0x3F,0x06,0x5B,0x4F ,0x66 ,0x6D,0x7D,0x07,0
x7F ,0x6F};

7 int display2[10] = {0xCO,0xF9,0xA4,0xB0,0x99,0x92,0x82,0xF8,0

x80,0x901};
char dato_rx;

void main() {
setup_timer_O(RTCC_INTERNAL|RTCC_DIV_128); //1600 ms
overflow

enable_interrupts (INT_TIMERO) ;
enable_interrupts (GLOBAL) ;
set_timer0 (26473) ;

set_tris_b (0x00);

while (TRUE) {
if (kbhit)){
dato_rx = getch(); //if (kbhit()>0) Verifica si ha
recibido un dato por el puerto serial
switch(dato_rx)
{
case ’a’:
local ++;
putc(’a’);

delay_ms (16) ;
break;

case ’b’:
local--;
delay_ms (16) ;
break;

case ’c’:
vis++;
delay_ms (16) ;
break;

case ’d’:
vis-—;
delay_ms (16) ;
break;

case ’e’
timer++;
break;

case ’f’:
reset++;
timer = 0;
local
vis
per
min ;
reloj= 0;
unidades = 0;
decenas = 0;
shot=0;
sreloj =0;
break;

|
O O O |
o

case ’z’:
shot ++;
delay_ms (16) ;
break;

}

unidades=reloj%10;
decenas=(reloj/10)%10;

output_low(digla);
output_high(diglb) ;
output_high (dig2b) ;
output_low (dig2c) ;
output_low(dig3c);
output_low(digéc);
output_high(dig2a);
output_high(diglc) ;
output_b(display[locall);
delay_ms (3);

output_high(digla);
output_low (diglb) ;
output_high(dig2b) ;
output_low (dig2c) ;
output_low (dig3c) ;
output_low(digéc);
output_high(dig2a);
output_high(diglc) ;
output_b (displayl[vis]) ;
delay_ms (3);

output_high(digla);
output_high(digilb) ;
output_low(dig2b);
output_low(dig2c);
output_low(dig3c);
output_low(digdc);
output_high(dig2a);
output_high(diglc) ;
output_b(display[per]);
delay_ms (3) ;

output_high(digla);
output_high(diglb) ;
output_high(dig2b) ;
output_high(dig2c) ;
output_low(dig3c);
output_low (digéc) ;
output_high(dig2a);
output_high(diglc);
output_b(display2[min]) ;
delay_ms (3) ;

output_high(digla);

10

168 output_high(diglb) ;
169 output_high (dig2b) ;
170 output_low (dig2c) ;
171 output_high(dig3c);
172 output_low(digéc);
173 output_high(dig2a) ;
! output_high(diglc);
175 output_b(display2[decenas]) ;
176 delay_ms (3) ;

178 output_high(digla) ;
179 output_high(digilb);
180 output_high(dig2b) ;
181 output_low (dig2c) ;
182 output_low (dig3c) ;
183 output_high (digéc) ;
184 output_high(dig2a) ;
185 output_high(diglc) ;
186 output_b(display2[unidades]) ;
187 delay_ms (3) ;

188

189 suni=sreloj#%10;

190 sdec=(sreloj/10) %10;

192 output_high(digla);

193 output_high(digilb) ;

194 output_high(dig2b) ;

195 output_low (dig2c) ;

196 output_low (dig3c) ;

197 output_low (digéc) ;

198 output_low (dig2a) ;

199 output_high(diglc) ;

200 output_b (display[sunil) ;
201 delay_ms (3);

203 output_high(digla);

204 output_high(digilb) ;

205 output_high(dig2b) ;

206 output_low (dig2c) ;

207 output_low (dig3c) ;

208 output_low (digéc) ;

209 output_high(dig2a) ;

210 output_low(diglc);

211 output_b(display[sdec]) ;
212 delay_ms (3);

11

if (local > 9)

local = 0;

¥

if (vis > 9)
vis = 0;

}

if (per > 5)
per = 0;
min = 0;
timer = 0;

}

if (sreloj > 24){
sreloj=0;
sreloj=88;

}

if (shot>1){
shot=0;
sreloj =0;
suni = O0;
sdec =0;

}

if (reloj > 59){
reloj=0;
min++;
per = min + 1;

}

if (reset>0){
reset = 0;
timer = 0;
local = 0;
vis = 0;
per = 0;
min = O0;
reloj= O0;
unidades = 0;
decenas = 0;
shot = 0;
sreloj =0;
suni = O0;
sdec =0;

}

12

3.3 Simulacion en Proteus

055¥48TDId

ddATON/ETY asna
ddS30/LNV/C3Y
ddSZHO/ONV/TIH
ddSTHI/GNY/03H
atd/Ldds/L.ad asdreiaiizad
OTd/9ddS/ead D9dfeigi/egy
A1d/SddS/Sad Wodrtiad/sad
Yddsiad ddSSO/0IGH/TINY /79
€dds/ead OdAZdID/6NY/ETH
¢dds/ead OWALNI/BNY/Zad
Tdds/tayd TOSMHMIS/TLNIOTNY/TaY
0dds/oad VAs/IdS/0L14/0LNIZTINY/08d
IM12/TOSO
0as/La/xy/Lod OM10/23S0/9vH
MI/XL90YH LNOZO/NIANT/SSHNV/GYH
dA+a/50Y AD¥/LNOTD/IHD0L/AYE
WA/-Q/vYd +IIANENV/EVH
V1d/1d22/2od JIYAD/HFHARNVEYH
30N/2dI2/ISOTL/TOH TINV/TVH
MOTL/OSOTL/00H ONv/OvH

1no
aN9|

micracontrolandos

X¥ OINAOW
€n

T T T AT
[42-} 114 84 A |
Pi:| og =] va

[4-] 1d

<8
a8

sopueionU0B0 DI €8

2d
XLOoIndow 18
N

V8¢349101d

=T il []
of~|o]o]=l=]=]=

o)

o—
o—
o—<

o=—1]
(o ——2]

e
1 =1 B8 N

ISOT.L/L8Y

DIOTL/OSOTL/99Yd

Sad

vad
Td2o/ead
ADMXLead
1arxymay
ANI/0gd

2dND/IMD0 LYY
TdND/ENV/EVY
JdIUNENVRVYH

HIoW/SYY

TINV/TVY LNOM12/22S0/9VY

ONV/OvY

NIXIOTISO/LYY

sn

13

3.4 Implementacion Fisica

3.5 Transmisor

14

4 Referencias

https://lastminuteengineers.com/433mhz-rf-wireless-arduino-tutorial/
https://www.youtube.com/watch?v=9-JsrJU3cwU&1list=PLONPO-iVba9nby_

KTCHt9GGj9dGSj1qYo&index=31&pp=iAQB
https://www.youtube.com/watch?v=MEIuWy9-nn4&1ist=PLONPO-iVba9nbY_

KTCHt9GGj9dGSj1qYokindex=32&t=247s&pp=1AQB

15

https://lastminuteengineers.com/433mhz-rf-wireless-arduino-tutorial/
https://www.youtube.com/watch?v=9-JsrJU3cwU&list=PLONPO-iVba9nbY_KTCHt9GGj9dGSj1qYo&index=31&pp=iAQB
https://www.youtube.com/watch?v=9-JsrJU3cwU&list=PLONPO-iVba9nbY_KTCHt9GGj9dGSj1qYo&index=31&pp=iAQB
https://www.youtube.com/watch?v=MEIuWy9-nn4&list=PLONPO-iVba9nbY_KTCHt9GGj9dGSj1qYo&index=32&t=247s&pp=iAQB
https://www.youtube.com/watch?v=MEIuWy9-nn4&list=PLONPO-iVba9nbY_KTCHt9GGj9dGSj1qYo&index=32&t=247s&pp=iAQB

	Descripcion de proyecto
	Documentacion de componentes
	PIC16F628A
	PIC18F4550
	Modulos RF de 433Mhz
	FS1000A
	XY-MK-5V
	Modulación por desplazamiento de amplitud

	Implementacion
	Transmisor
	Receptor
	Simulacion en Proteus
	Implementacion Fisica
	Transmisor
	Receptor

	Referencias

