
Active-HDL Student Edition

Active-HDL PDF Export
PONG workspace

Active-HDL Student Edition
Copyright 2022 ALDEC, Inc. Henderson, NV USA
All Rights Reserved.
ALDEC, Inc. homepage http://www.aldec.com

http://www.aldec.com

Contents
1 Table of Contents
2 PONG . 1

2.1 PONG.vhd . 1
2.2 VGA_Sync_Pulses.vhd . 4
2.3 PONG_TOP.vhd . 6
2.4 BALL_CONTROL.vhd . 11
2.5 DRAW_LOSE_SCREEN.vhd . 14
2.6 DRAW_WIN_SCREEN.vhd . 16
2.7 PADDLE_CONTROL.vhd . 17
2.8 PONG_PACKAGE.vhd . 19
2.9 Sync_To_Count.vhd . 20
2.10 VGA_Sync_Porch.vhd . 22

2 PONG

2.1 PONG.vhd

--Cristian Alexis Lopez Bernal
--Angel Daniel Zanahua Soto
--Jose Luis Rubio Manjarrez

library ieee;
 use ieee.std_logic_1164.all;

library work;
 use work.all;

entity PONG is

 port (

 CLK : in std_logic; -- PIN_17

 BTNS : in std_logic_vector(2 downto 0); -- PIN_144, 32, 31

 VGA_HSYNC : out std_logic; -- PIN_69
 VGA_VSYNC : out std_logic; -- PIN_71
 VGA_RED_0 : out std_logic; -- PIN_40
 VGA_RED_1 : out std_logic; -- PIN_42
 VGA_RED_2 : out std_logic; -- PIN_44
 VGA_GRN_0 : out std_logic; -- PIN_47
 VGA_GRN_1 : out std_logic; -- PIN_51
 VGA_GRN_2 : out std_logic; -- PIN_53
 VGA_BLU_0 : out std_logic; -- PIN_57
 VGA_BLU_1 : out std_logic; -- PIN_59
 VGA_BLU_2 : out std_logic; -- PIN_63

 LEDS : out std_logic_vector(2 downto 0) -- PIN_9, 7, 3
);

end entity;

architecture arch of PONG is

 -- VGA frame size
 constant videoWidth : integer := 3;
 constant totalCols : integer := 800;
 constant totalRows : integer := 525;
 constant activeCols : integer := 640;
 constant activeRows : integer := 480;

 -- More VGA signals
 signal hsync : std_logic;
 signal vsync : std_logic;
 signal redVideoPorch : std_logic_vector(videoWidth - 1 downto 0);
 signal grnVideoPorch : std_logic_vector(videoWidth - 1 downto 0);
 signal bluVideoPorch : std_logic_vector(videoWidth - 1 downto 0);

 -- Pong signals
 signal hsyncPong : std_logic;
 signal vsyncPong : std_logic;
 signal redVideoPong : std_logic_vector(videoWidth - 1 downto 0);
 signal grnVideoPong : std_logic_vector(videoWidth - 1 downto 0);

Active-HDL Student Edition

Active-HDL Student Edition
1

 signal bluVideoPong : std_logic_vector(videoWidth - 1 downto 0);

 -- Clock (25MHz)
 signal clock_half : std_logic := '0'; -- Generate 25MHz clock from 50MHz

 -- Debounce buttons
 signal btnPrevSteadyState : std_logic_vector(2 downto 0) := (others =>
 '1');
 signal btns_filtered : std_logic_vector(2 downto 0);

 -- LEDs
 signal r_leds : std_logic_vector(2 downto 0) := (others => '0');

begin

 VGA_RED_0 <= redVideoPorch(0);
 VGA_RED_1 <= redVideoPorch(1);
 VGA_RED_2 <= redVideoPorch(2);

 VGA_GRN_0 <= grnVideoPorch(0);
 VGA_GRN_1 <= grnVideoPorch(1);
 VGA_GRN_2 <= grnVideoPorch(2);

 VGA_BLU_0 <= bluVideoPorch(0);
 VGA_BLU_1 <= bluVideoPorch(1);
 VGA_BLU_2 <= bluVideoPorch(2);

 -- BTNs are configured as active low yet PONG entities expect active high
 btns_filtered <= not btnPrevSteadyState;

 -- LEDs are active low
 LEDS <= not r_leds;

 VGA_Sync_Pulses_instance : entity VGA_Sync_Pulses

 generic map (

 totalCols,
 totalRows,
 activeCols,
 activeRows
)

 port map (

 clock_half,
 --
 hsync,
 vsync,
 open,
 open
);

 VGA_Sync_Porch_instance : entity VGA_Sync_Porch

 generic map (

 videoWidth,
 totalCols,
 totalRows,

Active-HDL Student Edition

Active-HDL Student Edition
2

 activeCols,
 activeRows
)

 port map (

 clock_half,
 hsyncPong,
 vsyncPong,
 redVideoPong,
 grnVideoPong,
 bluvideoPong,
 --
 VGA_HSYNC,
 VGA_VSYNC,
 redVideoPorch,
 grnVideoPorch,
 bluVideoPorch
);

 Pong_Top_instance : entity PONG_TOP

 generic map (

 videoWidth,
 totalCols,
 totalRows,
 activeCols,
 activeRows
)

 port map (

 clock_half,
 hsync,
 vsync,
 BTNS(2), --btns_filtered(2), -- reset
 BTNS(1), --btns_filtered(1), -- up
 BTNS(0), --btns_filtered(0), -- down
 --
 hsyncPong,
 vsyncPong,
 redVideoPong,
 grnVideoPong,
 bluVideoPong,

 r_leds
);

-- Debounce_instance_2 : DEBOUNCE_SWITCH
--
-- generic map (
--
-- 15 -- ?? at 50MHz
--)
--
-- port map (
--
-- CLK,
-- BTNS(2),
-- --

Active-HDL Student Edition

Active-HDL Student Edition
3

-- btnPrevSteadyState(2)
--);
--
-- Debounce_instance_1 : DEBOUNCE_SWITCH
--
-- generic map (
--
-- 15 -- ?? at 50MHz
--)
--
-- port map (
--
-- CLK,
-- BTNS(1),
-- --
-- btnPrevSteadyState(1)
--);
--
-- Debounce_instance_0 : DEBOUNCE_SWITCH
--
-- generic map (
--
-- 15 -- ?? at 50MHz
--)
--
-- port map (
--
-- CLK,
-- BTNS(0),
-- --
-- btnPrevSteadyState(0)
--);

 -- Generate 25MHz clock
 process(CLK)

 begin

 if rising_edge(CLK) then

 clock_half <= not clock_half;

 end if;

 end process;

end architecture;

2.2 VGA_Sync_Pulses.vhd

-- http://www.nandland.com
-- https://youtu.be/7wjTJivsNMM

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
--use work.all;

entity VGA_Sync_Pulses is

Active-HDL Student Edition

Active-HDL Student Edition
4

http://www.nandland.com

 generic (

 TOTAL_COLS : integer;
 TOTAL_ROWS : integer;
 ACTIVE_COLS : integer;
 ACTIVE_ROWS : integer
);

 port (

 CLK : in std_logic;
 o_HSYNC : out std_logic;
 o_VSYNC : out std_logic;
 COL_COUNT : out std_logic_vector(9 downto 0);
 ROW_COUNT : out std_logic_vector(9 downto 0)
);
end entity;

architecture arch of VGA_Sync_Pulses is

 signal colCount : integer range 0 to TOTAL_COLS - 1 := 0;
 signal rowCount : integer range 0 to TOTAL_ROWS - 1 := 0;

begin

 --
 o_HSYNC <= '1' when colCount < ACTIVE_COLS else '0';
 o_VSYNC <= '1' when rowCount < ACTIVE_ROWS else '0';

 COL_COUNT <= std_logic_vector(to_unsigned(colCount, COL_COUNT'length)
);
 ROW_COUNT <= std_logic_vector(to_unsigned(rowCount, ROW_COUNT'length)
);

 --
 process(CLK)

 begin

 if rising_edge(CLK) then

 if colCount = TOTAL_COLS - 1 then

 colCount <= 0;

 if rowCount = TOTAL_ROWS - 1 then

 rowCount <= 0;

 else

 rowCount <= rowCount + 1;

 end if;

 else

 colCount <= colCount + 1;

 end if;

 end if;

Active-HDL Student Edition

Active-HDL Student Edition
5

 end process;

end architecture;

2.3 PONG_TOP.vhd

-- https://www.nandland.com/goboard/pong-game-in-fpga-with-go-board-vga.html
-- www.jk-quantized.com

library ieee;
 use ieee.std_logic_1164.all;
 use ieee.numeric_std.all;

library work;
 use work.all;
 use work.PONG_PACKAGE.all;

entity PONG_TOP is

 generic (

 g_VIDEO_WIDTH : integer;
 g_TOTAL_COLS : integer;
 g_TOTAL_ROWS : integer;
 g_ACTIVE_COLS : integer;
 g_ACTIVE_ROWS : integer
);

 port (

 CLK : in std_logic;
 i_HSYNC : in std_logic;
 i_VSYNC : in std_logic;

 RESTART : in std_logic;

 P1_UP : in std_logic;
 P1_DOWN : in std_logic;

 o_HSYNC : out std_logic;
 o_VSYNC : out std_logic;
 RED_VIDEO : out std_logic_vector(g_VIDEO_WIDTH - 1 downto 0);

 BLU_VIDEO : out std_logic_vector(g_VIDEO_WIDTH - 1 downto 0);

 GRN_VIDEO : out std_logic_vector(g_VIDEO_WIDTH - 1 downto 0);

 DEBUG : out std_logic_vector(2 downto 0)
);

end entity;

architecture arch of PONG_TOP is

 type states is (

 s_idle,
 s_running,
 s_P1_Scores,
 s_P2_Scores,
 s_P1_Wins,
 s_P2_Wins

Active-HDL Student Edition

Active-HDL Student Edition
6

www.nandland.com/goboard/pong-game-in-fpga-with-go-board-vga.html
www.jk-quantized.com

);
 signal state : states := s_idle;

 signal hsync : std_logic;
 signal vsync : std_logic;

 signal colCount : std_logic_vector(9 downto 0);
 signal rowCount : std_logic_vector(9 downto 0);

 -- Divided versions or row/col counters
 -- Allows us to make board 40x30
 signal colCountDiv : std_logic_vector(5 downto 0) := (others => '0');
 signal rowCountDiv : std_logic_vector(5 downto 0) := (others => '0');

 signal drawAny : std_logic;

 signal drawBall : std_logic;
 signal ballX : std_logic_vector(5 downto 0);
 signal ballY : std_logic_vector(5 downto 0);
 signal ballUpdated : std_logic;

 signal P1_drawPaddle : std_logic;
 signal P1_paddleY : std_logic_vector(5 downto 0);
 signal P1_paddleTop : unsigned(5 downto 0);
 signal P1_paddleBtm : unsigned(5 downto 0);
 signal P1_score : integer range 0 to c_scoreLimit := 0;

 signal gameStarted : std_logic := '0';

 signal playerWins : std_logic := '0';
 signal playerLoses : std_logic := '0';
 signal drawPlayerWins : std_logic := '0';
 signal drawPlayerLoses : std_logic := '0';
 signal drawEndScreens : std_logic := '0';

begin

 DEBUG <= std_logic_vector(to_unsigned(P1_score, DEBUG'length));

 -- Drop 4 LSBs to divide by 16
 colCountDiv <= colCount(colCount'left downto 4);
 rowCountDiv <= rowCount(rowCount'left downto 4);

 -- Create intermediary signals for P1 and P2 paddle positions
 P1_paddleBtm <= unsigned(P1_paddleY);
 P1_paddleTop <= P1_paddleBtm + to_unsigned(c_P1_paddleHeight, P1_paddleB
tm'length);

 -- Assign color outputs
 drawAny <= drawBall or P1_drawPaddle;
 drawEndScreens <= drawPlayerWins or drawPlayerLoses;

 --RED_VIDEO <= (others => '1') when drawAny = '1' else (others => '0'
);
 --GRN_VIDEO <= (others => '1') when drawAny = '1' else (others => '0'
);
 --BLU_VIDEO <= (others => '1') when drawAny = '1' else (others => '0'
);

 RED_VIDEO <= (others => '1')
 when
 (gameStarted = '1' and drawAny = '1') or

Active-HDL Student Edition

Active-HDL Student Edition
7

 (gameStarted = '0' and drawEndScreens = '1')

 else
 (others => '0');

 GRN_VIDEO <= (others => '1')
 when
 (gameStarted = '1' and drawAny = '1') or
 (gameStarted = '0' and drawEndScreens = '1')

 else
 (others => '0');

 BLU_VIDEO <= (others => '1')
 when
 (gameStarted = '1' and drawAny = '1') or
 (gameStarted = '0' and drawEndScreens = '1')

 else
 (others => '0');

 Sync_To_Count_instance : entity Sync_To_Count

 generic map (

 g_TOTAL_COLS,
 g_TOTAL_ROWS
)

 port map (

 CLK,
 i_HSYNC,
 i_VSYNC,
 --
 hsync,
 vsync,
 colCount,
 rowCount
);

 P1_Paddle_Control_instance : entity PADDLE_CONTROL

 generic map (

 c_P1_paddleColPos,
 c_P1_paddleHeight
)

 port map (

 CLK,
 colCountDiv,
 rowCountDiv,
 P1_UP,
 P1_DOWN,
 --
 P1_drawPaddle,
 P1_paddleY
);

Active-HDL Student Edition

Active-HDL Student Edition
8

 Pong_Ball_instance : entity BALL_CONTROL

 port map (

 CLK,
 gameStarted,
 colCountDiv,
 rowCountDiv,
 --
 drawBall,
 ballX,
 ballY,
 ballUpdated
);

 Draw_Win_Screen_instance : entity DRAW_WIN_SCREEN

 port map (

 CLK,
 playerWins,
 colCountDiv,
 rowCountDiv,
 --
 drawPlayerWins
);

 Draw_Lose_Screen_instance : entity DRAW_LOSE_SCREEN

 port map (

 CLK,
 playerLoses,
 colCountDiv,
 rowCountDiv,
 --
 drawPlayerLoses
);

 -- Register synchs to align with output data
 process(CLK)

 begin

 if rising_edge(CLK) then

 o_VSYNC <= vsync;
 o_HSYNC <= hsync;

 end if;

 end process;

 -- Use state machinge to control state of play
 process(CLK)

 begin

 if rising_edge(CLK) then

Active-HDL Student Edition

Active-HDL Student Edition
9

 case state is

 when s_idle =>

 gameStarted <= '0'; --0 orig

 if RESTART = '1' then

 -- Reset
 P1_score <= 0;
 playerWins <= '0';
 playerLoses <= '0';

 -- Start
 gameStarted <= '1';
 state <= s_running;

 end if;

 when s_running =>

 if ballUpdated = '1' then

 -- Player 1's side
 if ballX = std_logic_vector(to_unsigned(0, ballX'le
ngth)) then

 if (unsigned(ballY) < P1_paddleBtm or
 unsigned(ballY) > P1_paddleTop)
 then

 state <= s_P2_Scores;

 end if;

 -- Player 2's side
 -- single player so ignore paddle... otherwise copy P
1 code
 elsif ballX = std_logic_vector(to_unsigned(c_gameWi
dth - 1, ballX'length)) then

 state <= s_P1_Scores;

 end if;

 end if;

 when s_P1_Scores =>

 if P1_score = c_scoreLimit then

 state <= s_P1_Wins;

 else

 P1_score <= P1_score + 1;

 state <= s_running;

 end if;

Active-HDL Student Edition

Active-HDL Student Edition
10

 when s_P2_Scores =>

 state <= s_P2_Wins;

 when s_P1_Wins =>

 playerWins <= '1'; -- draws fancy end screen

 state <= s_idle;

 when s_P2_Wins =>

 playerLoses <= '1'; -- draws fancy end screen

 state <= s_idle;

 -- Shouldn't get here
 when others =>

 state <= s_idle;

 end case;

 end if;

 end process;

end architecture;

2.4 BALL_CONTROL.vhd

library ieee;
 use ieee.std_logic_1164.all;
 use ieee.numeric_std.all;

library work;
 use work.PONG_PACKAGE.all;

entity BALL_CONTROL is

 port (

 CLK : in std_logic;
 GAME_STARTED : in std_logic;
 COL_COUNT_DIV : in std_logic_vector(5 downto 0);
 ROW_COUNT_DIV : in std_logic_vector(5 downto 0);

 DRAW_BALL : out std_logic;
 BALL_X : out std_logic_vector(5 downto 0);
 BALL_Y : out std_logic_vector(5 downto 0);
 BALL_UPDATED : out std_logic
);

end entity;

architecture arch of BALL_CONTROL is

 signal colIndex : integer range 0 to 2 ** COL_COUNT_DIV'length := 0;
 signal rowIndex : integer range 0 to 2 ** ROW_COUNT_DIV'length := 0;

 signal ballCount : integer range 0 to c_ballSpeed := 0;

Active-HDL Student Edition

Active-HDL Student Edition
11

 signal ballX : integer range 0 to 2 ** COL_COUNT_DIV'length := 0;
 signal ballY : integer range 0 to 2 ** ROW_COUNT_DIV'length := 0;
 signal ballXPrev : integer range 0 to 2 ** COL_COUNT_DIV'length := 0;
 signal ballYPrev : integer range 0 to 2 ** ROW_COUNT_DIV'length := 0;

 signal drawBall : std_logic := '0';

begin

 DRAW_BALL <= drawBall;
 BALL_X <= std_logic_vector(to_unsigned(ballX, BALL_X'length));
 BALL_Y <= std_logic_vector(to_unsigned(ballY, BALL_Y'length));

 colIndex <= to_integer(unsigned(COL_COUNT_DIV));
 rowIndex <= to_integer(unsigned(ROW_COUNT_DIV));

 -- Move ball
 process(CLK)

 begin

 if rising_edge(CLK) then

 -- Ball stays in middle of screen until game starts
 if GAME_STARTED = '0' then

 ballX <= c_gameWidth / 2;
 ballY <= c_gameHeight / 2;
 ballXPrev <= c_gameWidth / 2 + 1;
 ballYPrev <= c_gameHeight / 2 - 1;

 else

 -- Update ball counter
 if ballCount = c_ballSpeed then

 ballCount <= 0;

 BALL_UPDATED <= '1';

 else

 ballCount <= ballCount + 1;

 BALL_UPDATED <= '0';

 end if;

 -- Control x position
 if ballCount = c_ballSpeed then

 ballXPrev <= ballX;

 -- If ball is moving to right, keep moving to right,
 -- but check not at wall in which case bounces back
 if ballXPrev < ballX then

 if ballX = c_gameWidth - 1 then

 ballX <= ballX - 1;

Active-HDL Student Edition

Active-HDL Student Edition
12

 else

 ballX <= ballX + 1;

 end if;

 -- Ball moving to left
 elsif ballXPrev > ballX then

 if ballX = 0 then

 ballX <= ballX + 1;

 else

 ballX <= ballX - 1;

 end if;

 end if;

 end if;

 -- Control y position
 if ballCount = c_ballSpeed then

 ballYPrev <= ballY;

 -- If ball is moving up, keep moving up,
 -- but check not at wall in which case bounces back
 if ballYPrev < ballY then

 if ballY = c_gameHeight - 1 then

 ballY <= ballY - 1;

 else

 ballY <= ballY + 1;

 end if;

 -- Ball moving down
 elsif ballYPrev > ballY then

 if ballY = 0 then

 ballY <= ballY + 1;

 else

 ballY <= ballY - 1;

 end if;

 end if;

 end if;

 end if;

 end if;

Active-HDL Student Edition

Active-HDL Student Edition
13

 end process;

 -- Draw ball
 process(CLK)

 begin

 if rising_edge(CLK) then

 if colIndex = ballX and rowIndex = ballY then

 drawBall <= '1';

 else

 drawBall <= '0';

 end if;

 end if;

 end process;

end architecture;

2.5 DRAW_LOSE_SCREEN.vhd

-- www.jk-quantized.com

library ieee;
 use ieee.std_logic_1164.all;
 use ieee.numeric_std.all;

library work;
 use work.PONG_PACKAGE.all;

entity DRAW_LOSE_SCREEN is

 port (

 CLK : in std_logic;
 PLAYER_LOST : in std_logic;
 COL_COUNT_DIV : in std_logic_vector(5 downto 0);
 ROW_COUNT_DIV : in std_logic_vector(5 downto 0);

 DRAW_LOSE : out std_logic
);

end entity;

architecture arch of DRAW_LOSE_SCREEN is

 signal colIndex : integer range 0 to 2 ** COL_COUNT_DIV'length := 0;
 signal rowIndex : integer range 0 to 2 ** ROW_COUNT_DIV'length := 0;

 type pixels is array(0 to c_gameHeight - 1) of std_logic_vector(0 to c
_gameWidth - 1);
 signal pixel : pixels;

Active-HDL Student Edition

Active-HDL Student Edition
14

www.jk-quantized.com

begin

 -- Screen setup
 pixel(0) <= "00";
 pixel(1) <= "00";
 pixel(2) <= "00";
 pixel(3) <= "00";
 pixel(4) <= "00";
 pixel(5) <= "00";
 pixel(6) <= "00";
 pixel(7) <= "0000001111100111110010001000111110000000";
 pixel(8) <= "0000001000000100010011011000100000000000";
 pixel(9) <= "0000001000000100010010101000100000000000";
 pixel(10) <= "0000001000000100010010001000111100000000";
 pixel(11) <= "0000001111100111110010001000100000000000";
 pixel(12) <= "0000001000100100010010001000100000000000";
 pixel(13) <= "0000001000100100010010001000100000000000";
 pixel(14) <= "0000001111100100010010001000111110000000";
 pixel(15) <= "00";
 pixel(16) <= "00";
 pixel(17) <= "00";
 pixel(18) <= "0000001111100100010011111000111110000000";
 pixel(19) <= "0000001000100100010010000000100010000000";
 pixel(20) <= "0000001000100100010010000000100010000000";
 pixel(21) <= "0000001000100100010011111000111110000000";
 pixel(22) <= "0000001000100010100010000000110000000000";
 pixel(23) <= "0000001000100010100010000000101000000000";
 pixel(24) <= "0000001000100001000010000000100100000000";
 pixel(25) <= "0000001111100001000011111000100010000000";
 pixel(26) <= "00";
 pixel(27) <= "00";
 pixel(28) <= "00";
 pixel(29) <= "00";

 colIndex <= to_integer(unsigned(COL_COUNT_DIV));
 rowIndex <= to_integer(unsigned(ROW_COUNT_DIV));

 -- Draw screen
 process(CLK)

 begin

 if rising_edge(CLK) then

 if PLAYER_LOST = '1' and pixel(rowIndex)(colIndex) = '1' then

 DRAW_LOSE <= '1';

 else

 DRAW_LOSE <= '0';

 end if;

 end if;

 end process;

end architecture;

Active-HDL Student Edition

Active-HDL Student Edition
15

2.6 DRAW_WIN_SCREEN.vhd

-- www.jk-quantized.com

library ieee;
 use ieee.std_logic_1164.all;
 use ieee.numeric_std.all;

library work;
 use work.PONG_PACKAGE.all;

entity DRAW_WIN_SCREEN is

 port (

 CLK : in std_logic;
 PLAYER_WON : in std_logic;
 COL_COUNT_DIV : in std_logic_vector(5 downto 0);
 ROW_COUNT_DIV : in std_logic_vector(5 downto 0);

 DRAW_WIN : out std_logic
);

end entity;

architecture arch of DRAW_WIN_SCREEN is

 signal colIndex : integer range 0 to 2 ** COL_COUNT_DIV'length := 0;
 signal rowIndex : integer range 0 to 2 ** ROW_COUNT_DIV'length := 0;

 type pixels is array(0 to c_gameHeight - 1) of std_logic_vector(0 to c
_gameWidth - 1);
 signal pixel : pixels;

begin

 -- Screen setup
 pixel(0) <= "00";
 pixel(1) <= "00";
 pixel(2) <= "00";
 pixel(3) <= "00";
 pixel(4) <= "00";
 pixel(5) <= "00";
 pixel(6) <= "00";
 pixel(7) <= "0000000100011111000011111000111110000000";
 pixel(8) <= "0000000100000100000010000000100000000000";
 pixel(9) <= "0000000100000100000010000000100000000000";
 pixel(10) <= "0000000100000100000011111000111100000000";
 pixel(11) <= "0000000100000100000000001000100000000000";
 pixel(12) <= "0000000100000100000000001000100000000000";
 pixel(13) <= "0000000100000100000000001000100000000000";
 pixel(14) <= "0000000100000100000011111000111110000000";
 pixel(15) <= "00";
 pixel(16) <= "00";
 pixel(17) <= "00";
 pixel(18) <= "0000000001000100000000010000000000000000";
 pixel(19) <= "0000000001000100000000010000000000000000";
 pixel(20) <= "0000000001000100000000010000000000000000";
 pixel(21) <= "0000000001111100111110010000000000000000";
 pixel(22) <= "0000000000000100000000010000000000000000";
 pixel(23) <= "0000000000000100000000010000000000000000";
 pixel(24) <= "0000000000000100000000010000000000000000";

Active-HDL Student Edition

Active-HDL Student Edition
16

www.jk-quantized.com

 pixel(25) <= "0000000000000100000000010000000000000000";
 pixel(26) <= "00";
 pixel(27) <= "00";
 pixel(28) <= "00";
 pixel(29) <= "00";

 colIndex <= to_integer(unsigned(COL_COUNT_DIV));
 rowIndex <= to_integer(unsigned(ROW_COUNT_DIV));

 -- Draw screen
 process(CLK)

 begin

 if rising_edge(CLK) then

 if PLAYER_WON = '1' and pixel(rowIndex)(colIndex) = '1' then

 DRAW_WIN <= '1';

 else

 DRAW_WIN <= '0';

 end if;

 end if;

 end process;

end architecture;

2.7 PADDLE_CONTROL.vhd

library ieee;
 use ieee.std_logic_1164.all;
 use ieee.numeric_std.all;

library work;
 use work.PONG_PACKAGE.all;

entity PADDLE_CONTROL is

 generic (

 g_PADDLE_X : integer;
 g_PADDLE_HEIGHT : integer
);

 port (

 CLK : in std_logic;

 COL_COUNT_DIV : in std_logic_vector(5 downto 0);
 ROW_COUNT_DIV : in std_logic_vector(5 downto 0);

 UP : in std_logic;
 DOWN : in std_logic;

 DRAW_PADDLE : out std_logic;

Active-HDL Student Edition

Active-HDL Student Edition
17

 PADDLE_Y : out std_logic_vector(5 downto 0)
);

end entity;

architecture arch of PADDLE_CONTROL is

 signal colIndex : integer range 0 to 2 ** COL_COUNT_DIV'length := 0;
 signal rowIndex : integer range 0 to 2 ** ROW_COUNT_DIV'length := 0;

 signal paddleCount_enable : std_logic;
 signal paddleCount : integer range 0 to c_paddleSpeed := 0;

 signal paddleY : integer range 0 to c_gameHeight - g_PADDLE_HEIGHT - 1 :=
 0;

 signal drawPaddle : std_logic := '0';

begin

 DRAW_PADDLE <= drawPaddle;
 PADDLE_Y <= std_logic_vector(to_unsigned(paddleY, PADDLE_Y'length));

 colIndex <= to_integer(unsigned(COL_COUNT_DIV));
 rowIndex <= to_integer(unsigned(ROW_COUNT_DIV));

 -- Move paddle only when one button is pressed
 paddleCount_enable <= UP xor DOWN;

 -- Move paddle
 process(CLK)

 begin

 if rising_edge(CLK) then

 -- Update paddle counter when either switch is pressed and held
 if paddleCount_enable = '1' then

 if paddleCount = c_paddleSpeed then

 paddleCount <= 0;

 else

 paddleCount <= paddleCount + 1;

 end if;

 else

 paddleCount <= 0;

 end if;

 -- Update paddle location
 if UP = '1' and paddleCount = c_paddleSpeed then

 -- If already at top, don't update
 if paddleY /= 0 then

Active-HDL Student Edition

Active-HDL Student Edition
18

 paddleY <= paddleY - 1;

 end if;

 elsif DOWN = '1' and paddleCount = c_paddleSpeed then

 -- If already at bottom, don't update
 if paddleY /= c_gameHeight - g_PADDLE_HEIGHT - 1 then

 paddleY <= paddleY + 1;

 end if;

 end if;

 end if;

 end process;

 -- Draw paddle
 process(CLK)

 begin

 if rising_edge(CLK) then

 if (colIndex = g_PADDLE_X and
 rowIndex >= paddleY and
 rowIndex <= paddleY + g_PADDLE_HEIGHT)
 then

 drawPaddle <= '1';

 else

 drawPaddle <= '0';

 end if;

 end if;

 end process;

end architecture;

2.8 PONG_PACKAGE.vhd

-- https://www.nandland.com/goboard/pong-game-in-fpga-with-go-board-vga.html

library ieee;
 use ieee.std_logic_1164.all;
 use ieee.numeric_std.all;

package PONG_PACKAGE is

 -- Constants

 -- Set width and height of game board
 -- Note also have to change col/rowCountDiv accordingly in PONG_TOP.vhd

Active-HDL Student Edition

Active-HDL Student Edition
19

www.nandland.com/goboard/pong-game-in-fpga-with-go-board-vga.html

 constant c_gameWidth : integer := 40;
 constant c_gameHeight : integer := 30;

 -- Set score target
 constant c_scoreLimit : integer := 5;

 -- Set height (in board game units) of paddle
 constant c_P1_paddleHeight : integer := 6;
 constant c_P2_paddleHeight : integer := c_gameWidth;

 -- Set speed of paddle movement.
 -- In this case, paddle moves one board game unit every 50ms
 -- that button is held down (assuming a 25MHz clock)
 constant c_paddleSpeed : integer := 1250000;

 -- Set speed of ball movement.
 -- In this case, ball moves one board game unit every 50ms
 -- (assuming a 25MHz clock)
 constant c_ballSpeed : integer := 1250000;

 -- Set column index to draw player paddles
 constant c_P1_paddleColPos : integer := 0;
 constant c_P2_paddleColPos : integer := c_gameWidth - 1;

end package;

2.9 Sync_To_Count.vhd

-- http://www.nandland.com
-- https://youtu.be/7wjTJivsNMM

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
--use work.all;

entity Sync_To_Count is

 generic (

 TOTAL_COLS : integer;
 TOTAL_ROWS : integer
);

 port (

 CLK : in std_logic;
 i_HSYNC : in std_logic;
 i_VSYNC : in std_logic;

 o_HSYNC : out std_logic;
 o_VSYNC : out std_logic;
 COL_COUNT : out std_logic_vector(9 downto 0);
 ROW_COUNT : out std_logic_vector(9 downto 0)
);
end entity;

architecture arch of Sync_To_Count is

 signal vsync : std_logic := '0';
 signal hsync : std_logic := '0';

Active-HDL Student Edition

Active-HDL Student Edition
20

http://www.nandland.com

 signal framestart : std_logic;

 signal colCount : unsigned(9 downto 0) := (others => '0');
 signal rowCount : unsigned(9 downto 0) := (others => '0');

begin

 -- Looking for rising edge on vertical sync to reset counters
 framestart <= '1' when vsync = '0' and i_VSYNC = '1' else '0';

 o_VSYNC <= vsync;
 o_HSYNC <= hsync;

 ROW_COUNT <= std_logic_vector(rowCount);
 COL_COUNT <= std_logic_vector(colCount);

 -- Register syncs to align with output data
 process(CLK)

 begin

 if rising_edge(CLK) then

 vsync <= i_VSYNC;
 hsync <= i_HSYNC;

 end if;

 end process;

 -- Keep track of row/column counters
 process(CLK)

 begin

 if rising_edge(CLK) then

 if framestart = '1' then

 colCount <= (others => '0');
 rowCount <= (others => '0');

 else

 if colCount = to_unsigned(TOTAL_COLS - 1, colCount'length)
then

 colCount <= (others => '0');

 if rowCount = to_unsigned(TOTAL_ROWS - 1, rowCount'lengt
h) then

 rowCount <= (others => '0');

 else

 rowCount <= rowCount + 1;

 end if;

 else

 colCount <= colCount + 1;

Active-HDL Student Edition

Active-HDL Student Edition
21

 end if;

 end if;

 end if;

 end process;

end architecture;

2.10 VGA_Sync_Porch.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
--use work.all;

entity VGA_Sync_Porch is

 generic (

 VIDEO_WIDTH : integer;
 TOTAL_COLS : integer;
 TOTAL_ROWS : integer;
 ACTIVE_COLS : integer;
 ACTIVE_ROWS : integer
);

 port (

 CLK : in std_logic;
 i_HSYNC : in std_logic;
 i_VSYNC : in std_logic;
 i_RED_VIDEO : in std_logic_vector(VIDEO_WIDTH - 1 downto 0);
 i_GRN_VIDEO : in std_logic_vector(VIDEO_WIDTH - 1 downto 0);
 i_BLU_VIDEO : in std_logic_vector(VIDEO_WIDTH - 1 downto 0);

 o_HSYNC : out std_logic;
 o_VSYNC : out std_logic;
 o_RED_VIDEO : out std_logic_vector(VIDEO_WIDTH - 1 downto 0);
 o_GRN_VIDEO : out std_logic_vector(VIDEO_WIDTH - 1 downto 0);
 o_BLU_VIDEO : out std_logic_vector(VIDEO_WIDTH - 1 downto 0)
);

end entity;

architecture arch of VGA_Sync_Porch is

 constant frontPorchHorz : integer := 18;
 constant backPorchHorz : integer := 50;
 constant frontPorchVert : integer := 10;
 constant backPorchVert : integer := 33;

 signal w_hsync : std_logic;
 signal w_vsync : std_logic;
 signal r_hsync : std_logic := '0';
 signal r_vsync : std_logic := '0';

 signal colCount : std_logic_vector(9 downto 0);
 signal rowCount : std_logic_vector(9 downto 0);

Active-HDL Student Edition

Active-HDL Student Edition
22

 signal redVideo : std_logic_vector(VIDEO_WIDTH - 1 downto 0) := (other
s => '0');
 signal grnVideo : std_logic_vector(VIDEO_WIDTH - 1 downto 0) := (other
s => '0');
 signal bluVideo : std_logic_vector(VIDEO_WIDTH - 1 downto 0) := (other
s => '0');

 component Sync_To_Count is

 generic (

 TOTAL_COLS : integer;
 TOTAL_ROWS : integer
);

 port(

 CLK : in std_logic;
 i_HSYNC : in std_logic;
 i_VSYNC : in std_logic;

 o_HSYNC : out std_logic;
 o_VSYNC : out std_logic;
 COL_COUNT : out std_logic_vector(9 downto 0);
 ROW_COUNT : out std_logic_vector(9 downto 0)
);

 end component;

begin

 o_HSYNC <= r_hsync;
 o_VSYNC <= r_vsync;

 sync_inst : Sync_To_Count

 generic map (

 TOTAL_COLS,
 TOTAL_ROWS
)

 port map (

 CLK,
 i_HSYNC,
 i_VSYNC,

 w_hsync,
 w_vsync,
 colCount,
 rowCount
);

 -- Modify HSync and VSync signals to include front/back porch
 process(CLK)

 begin

 if rising_edge(CLK) then

 if (to_integer(unsigned(colCount)) < frontPorchHorz + ACTIVE
_COLS or

Active-HDL Student Edition

Active-HDL Student Edition
23

 to_integer(unsigned(colCount)) > TOTAL_COLS - backPorchH
orz - 1) then

 r_hsync <= '1';

 else

 r_hsync <= w_hsync;

 end if;

 if (to_integer(unsigned(rowCount)) < frontPorchVert + ACTIVE
_ROWS or
 to_integer(unsigned(rowCount)) > TOTAL_ROWS - backPorchV
ert - 1) then

 r_vsync <= '1';

 else

 r_vsync <= w_vsync;

 end if;

 end if;

 end process;

 -- Align input video to modifier synch pulses (2 clock cycles of delay)
 process(CLK)

 begin

 if rising_edge(CLK) then

 redVideo <= i_RED_VIDEO;
 grnVideo <= i_GRN_VIDEO;
 bluVideo <= i_BLU_VIDEO;

 o_RED_VIDEO <= redVideo;
 o_GRN_VIDEO <= grnVideo;
 o_BLU_VIDEO <= bluVideo;

 end if;

 end process;

end architecture;

Active-HDL Student Edition

Active-HDL Student Edition
24

	1 Table of Contents
	2 PONG
	2.1 PONG.vhd
	2.2 VGA_Sync_Pulses.vhd
	2.3 PONG_TOP.vhd
	2.4 BALL_CONTROL.vhd
	2.5 DRAW_LOSE_SCREEN.vhd
	2.6 DRAW_WIN_SCREEN.vhd
	2.7 PADDLE_CONTROL.vhd
	2.8 PONG_PACKAGE.vhd
	2.9 Sync_To_Count.vhd
	2.10 VGA_Sync_Porch.vhd

