Active-HDL Student Edition

Active-HDL PDF Export
PONG workspace

Active-HDL™

FPGA Design and Simulation

THE DESIGM VERIFICATION COMPANY S
- All Rights Reserved.

Active-HDL Student Edition

Copyright 2022 ALDEC, Inc. Henderson, NV USA
All Rights Reserved.

ALDEC, Inc. homepage

http://www.aldec.com

1
2

Contents

Table of Contents
PONG L.ttt ittt ettt ettt et e et e 1

2.1
2.2
23
24
2.5
2.6
2.7
2.8
29
2.1

PONG.VhA . 1
VGA _Sync Pulses.vhd 4
PONG _TOP.VhA ... e e e 6
BALL CONTROL.VhA e e e e e 11
DRAW_LOSE_SCREEN.Vhd e e e e 14
DRAW WIN_SCREEN.Vhd e e e e e 16
PADDLE_CONTROL.Vhd ... e e e e e 17
PONG_PACKAGE.VhA e e e e 19
Sync_To_Count.vhd 20

0 VGA_Sync _Porch.vhd 22

Active-HDL Student Edition
2 PONG

2.1 PONG.vhd

--Cristian Alexis Lopez Ber
--Angel Daniel Zanahua Soto
--Jose Luis Rubio Manjarrez

library ieee;
use ieee.std logic 1164

library work;
use work.all;

entity PONG is

nal

.all;

signal redVideoPorch :
signal grnVideoPorch :
signal bluVideoPorch :

-- Pong signals

port (
CLK : in std logic; -- PIN 17
BTNS : in std logic vector(2 downto O); -- PIN 144, 32, 31
VGA HSYNC : out std logic; -- PIN 69
VGA VSYNC : out std logic; -- PIN 71
VGA RED 0 : out std logic; -- PIN 40
VGA RED 1 : out std logic; -- PIN 42
VGA RED 2 : out std logic; -- PIN 44
VGA GRN O : out std logic; -- PIN 47
VGA GRN 1 : out std logic; -- PIN 51
VGA GRN 2 : out std logic; -- PIN 53
VGA BLU 0 : out std logic; -- PIN 57
VGA BLU 1 : out std logic; -- PIN 59
VGA BLU 2 : out std logic; -- PIN 63

) LEDS : out std logic vector(2 downto 0) -- PIN 9, 7, 3

end entity;
architecture arch of PONG is

-- VGA frame size

constant videoWidth : integer := 3;

constant totalCols : integer := 800;

constant totalRows : integer := 525;

constant activeCols : integer := 640;

constant activeRows : integer := 480;

-- More VGA signals

signal hsync std logic;

signal vsync std logic;

std logic vector(videoWidth - 1 downto 0);
std logic vector(videoWidth - 1 downto 0);
std logic vector(videoWidth - 1 downto 0);

signal hsyncPong : std logic;
signal vsyncPong : std logic;

signal redVideoPong

signal grnVideoPong :

Active-HDL Student Edition

: std logic vector(videoWidth - 1 downto 0);
std logic vector(videoWidth - 1 downto 0);

1

Active-HDL Student Edition

signal bluVideoPong : std logic vector(videoWidth - 1 downto 0);

-- Clock (25MHz)

signal clock half : std logic := '0'; -- Generate 25MHz clock from 50MHz

-- Debounce buttons

Ill ;
signal btns filtered : std logic vector(2 downto 0);
-- LEDs
signal r_leds : std logic vector(2 downto 0) := (others =>

begin

VGA RED 0 <= redVideoPorch(0);
VGA RED 1 <= redVideoPorch(1);
VGA RED 2 <= redVideoPorch(2);

0
1
2
VGA GRN 0 <= grnVideoPorch(0);
VGA GRN 1 <= grnVideoPorch(1);
VGA GRN 2 <= grnVideoPorch(2);
0
1
2

VGA BLU 0 <= bluVideoPorch(0);
VGA BLU 1 <= bluVideoPorch(1);
VGA BLU 2 <= bluVideoPorch(2);

signal btnPrevSteadyState : std logic vector(2 downto 0) (others =>

-- BTNs are configured as active low yet PONG entities expect active high

btns filtered <= not btnPrevSteadyState;

-- LEDs are active low
LEDS <= not r_ leds;

VGA Sync Pulses instance : entity VGA Sync Pulses
generic map (

totalCols,
totalRows,
activeCols,
activeRows

port map (
clock half,

hsync,

vsync,

open,
\ open

VGA Sync Porch_instance : entity VGA Sync Porch
generic map (
videoWidth,

totalCols,
totalRows,

Active-HDL Student Edition

Active-HDL Student Edition

)

activeCols,
activeRows

port map (

);

Pong Top_ instance

clock half,
hsyncPong,
vsyncPong,

redVideoPong,
grnVideoPong,
bluvideoPong,

VGA HSYNC,
VGA VSYNC,

redVideoPorch,
grnVideoPorch,
bluVideoPorch

generic map (

)

videoWidth,
totalCols,
totalRows,
activeCols,
activeRows

port map (

);

-- Debounce instance 2

clock half,
hsync,
vsync,
BTNS(2),
BTNS (1),
BTNS(0),
hsyncPong,
vsyncPong,

: entity PONG_TOP

--btns filtered(2)
--btns filtered(1)
--btns filtered(0)

redvVideoPong,
grnVideoPong,
bluvideoPong,

r leds

-- generic map (

--)

15

-- port map (

CLK,
BTNS(2),

Active-HDL Student Edition

: DEBOUNCE SWITCH

-- 7?7 at 50MHz

’
’
’

-- reset

- - up
-- down

Active-HDL Student Edition
-- btnPrevSteadyState(2)

-- Debounce instance 1 : DEBOUNCE SWITCH
-- generic map (

-- 15 -- 7?7 at 50MHz
--)

-- port map (

-- CLK,
-- BTNS(1),

-- BinPrevSteadyState(l)

-- Debounce instance 0 : DEBOUNCE SWITCH
-- generic map (

-- 15 -- 7?7 at 50MHz
--)

-- port map (

-- CLK,
-- BTNS(0),

.-) BinPrevSteadyState(O)

-- Generate 25MHz clock
process(CLK)

begin
if rising edge(CLK) then
clock half <= not clock half;
end if;
end process;

end architecture;

2.2 VGA_Sync_Pulses.vhd

-- https://youtu.be/7wjTIivsNMM

library ieee;
use ieee.std logic 1164.all;
use ieee.numeric std.all;

--use work.all;

entity VGA Sync Pulses is

Active-HDL Student Edition

http://www.nandland.com

Active-HDL Student Edition
generic (

TOTAL COLS : integer;
TOTAL ROWS : integer;
ACTIVE COLS : integer;
) ACTIVE ROWS : integer

port (
CLK : in std logic;
0 HSYNC : out std logic;
o VSYNC : out std logic;

COL COUNT : out std logic vector(9 downto 0);
\ ROW _COUNT : out std logic vector(9 downto 0O)

end entity;
architecture arch of VGA Sync Pulses is

signal colCount : integer range 0 to TOTAL COLS - 1 :
signal rowCount : integer range 0 to TOTAL ROWS - 1 :

I
(o]

begin

0 HSYNC <= '1' when colCount < ACTIVE COLS else '0';
0 VSYNC <= '1' when rowCount < ACTIVE ROWS else '0';

COL_COUNT <= std logic vector(to unsigned(colCount, COL COUNT'length)
ROW COUNT <= std logic vector(to_unsigned(rowCount, ROW COUNT'length)
é;ocess(CLK)
begin
if rising edge(CLK) then
if colCount = TOTAL COLS - 1 then
colCount <= 0;
if rowCount = TOTAL ROWS - 1 then
rowCount <= 0;
else
rowCount <= rowCount + 1;
end if;
else
colCount <= colCount + 1;
end if;

end if;

Active-HDL Student Edition

Active-HDL Student Edition

end

process;

end architecture;

2.3 PONG_TOP.vhd
-- https://

library
use
use

library
use
use

ieee;

ieee.std logic 1164.all;
ieee.numeric std.all;

work;
work.all;

work.PONG PACKAGE.all;
entity PONG TOP is

generic (

);

g VIDEO WIDT
g TOTAL COLS
g_TOTAL ROWS
g_ACTIVE COL

g _ACTIVE ROWS

port (

);

CLK
i HSYNC
i VSYNC
RESTART

P1 UP
P1 DOWN

0 HSYNC
0 VSYNC
RED VIDEO :
BLU VIDEO :

GRN_VIDEO :

H :

integer;

: integer;
: 1nteger;

S :

:in
:in
1 1in
:in
:in
:in
: out
: out

out
out

out

integer;

: integer

std logic;
std logic;
std logic;
std logic;

std logic;
std logic;

std logic;
std logic;
std logic vector(g _VIDEO WIDTH - 1 downto 0);
std logic vector(g VIDEO WIDTH - 1 downto 0O);

std logic vector(g VIDEO WIDTH - 1 downto 0);

DEBUG : out std logic vector(2 downto 0)

end entity;

architecture arch of PONG _TOP is

type states is (

s _idle,
s_running,

s P1 Scores,
s P2 Scores,
s P1 Wins,

s P2 Wins

Active-HDL Student Edition

www.nandland.com/goboard/pong-game-in-fpga-with-go-board-vga.html
www.jk-quantized.com

Active-HDL Student Edition
)

signal state : states := s idle;

signal hsync : std logic;
signal vsync : std logic;

signal colCount : std logic vector(9 downto 0);
signal rowCount : std logic vector(9 downto 0);

-- Divided versions or row/col counters

-- Allows us to make board 40x30

signal colCountDiv : std logic vector(5 downto 0)
signal rowCountDiv : std logic vector(5 downto 0)

(others => '0')
(others == '0')

signal drawAny : std logic;

signal drawBall : std logic;

signal ballX : std logic vector(5 downto O);
signal bally : std logic vector(5 downto 0);
signal ballUpdated : std logic;

signal Pl drawPaddle : std logic;

signal Pl paddleY : std logic vector(5 downto O);
signal Pl paddleTop : unsigned(5 downto 0);

signal Pl paddleBtm : unsigned(5 downto 0);

signal P1 score : integer range 0 to c_scoreLimit := 0;
signal gameStarted : std logic := '0°';

signal playerWins : std logic := '0';

signal playerlLoses : std logic := '0';

signal drawPlayerWins : std logic := '0"';

signal drawPlayerlLoses : std logic := '0°';

signal drawEndScreens : std logic := '0°';

begin

DEBUG <= std logic vector(to unsigned(Pl score, DEBUG'length));

-- Drop 4 LSBs to divide by 16
colCountDiv <= colCount(colCount'left downto 4);
rowCountDiv <= rowCount(rowCount'left downto 4);

-- Create intermediary signals for Pl and P2 paddle positions

P1 paddleBtm <= unsigned(P1 paddleY);

P1 paddleTop <= P1 paddleBtm + to unsigned(c Pl paddleHeight, P1 paddleB
tm'length);

-- Assign color outputs

drawAny <= drawBall or Pl drawPaddle;

drawEndScreens <= drawPlayerWins or drawPlayerLoses;

--RED VIDEO <= (others

--GRN VIDEO <= (others => '1') when drawAny

--BLU VIDEO <= (others => '1') when drawAny

> '1l') when drawAny 'l'" else (others => '0'

'l'" else (others => '0'

'l'" else (others => '0'

RED VIDEO <= (others
when
(gameStarted

> '1'")

"l'" and drawAny = '1') or

7
Active-HDL Student Edition

Active-HDL Student Edition
(gameStarted = '0' and drawEndScreens = '1')

else
(others => '0');

GRN VIDEO <= (others => '1")
when

(gameStarted

(gameStarted

'"l'" and drawAny = '1') or
'0' and drawEndScreens = '1')

else
(others => '0"');

BLU VIDEO <= (others
when

(gameStarted

(gameStarted

> '1")

‘1" and drawAny = '1') or
'0'" and drawEndScreens = '1')

else
(others => '0');

Sync_To Count instance : entity Sync To Count
generic map (

g TOTAL COLS,
) g_TOTAL_ROWS

port map (

CLK,

i HSYNC,
i VSYNC,
hsync,
vsync,
colCount,
rowCount

);

P1 Paddle Control instance : entity PADDLE CONTROL
generic map (

c_P1 paddleColPos,
) c_P1 paddleHeight

port map (

CLK,
colCountDiv,
rowCountDiv,
P1 _UP,
P1_DOWN,

ﬁi_drawPaddle,
P1 paddleY

Active-HDL Student Edition

Active-HDL Student Edition

Pong Ball instance : entity BALL_CONTROL
port map (

CLK,

gameStarted,
colCountDiv,
rowCountDiv,

drawBall,
ballX,
bally,

) ballUpdated

Draw Win Screen instance : entity DRAW WIN SCREEN
port map (
CLK,
playerWins,

colCountDiv,
rowCountDiv,

drawPlayerWins
);

Draw Lose Screen instance : entity DRAW LOSE SCREEN
port map (
CLK,
playerLoses,

colCountDiv,
rowCountDiv,

drawPlayerlLoses
);

-- Register synchs to align with output data
process(CLK)
begin

if rising edge(CLK) then

0 VSYNC <= vsync;
0 _HSYNC <= hsync;

end if;
end process;
-- Use state machinge to control state of play
process(CLK)
begin

if rising edge(CLK) then

Active-HDL Student Edition

Active-HDL Student Edition
case state is
when s _idle =>
gameStarted <= '0'; --0 orig
if RESTART = '1' then

-- Reset

Pl score <= 0;
playerWins <= '0';
playerLoses <= '0';

-- Start
gameStarted <= '1';
state <= s _running;
end if;
when s _running =>
if ballUpdated = '1"' then
-- Player 1's side
if ballX = std logic vector(to_unsigned(0, ballX'le
ngth)) then
if (unsigned(ballY) < P1 paddleBtm or
unsigned(ballY) > P1 paddleTop)
then
state <= s P2 Scores;
end if;
-- Player 2's side

-- single player so ignore paddle... otherwise copy P
1 code

elsif ballX = std logic vector(to_unsigned(c_gameWi
dth - 1, ballX'length)) then
state <= s P1 Scores;
end if;

end if;

when s P1 Scores =>
if P1 score = c_scorelLimit then
state <= s P1 Wins;
else
Pl score <= Pl score + 1;
state <= s running;

end if;

10
Active-HDL Student Edition

Active-HDL Student Edition
when s P2 Scores =>
state <= s P2 Wins;
when s P1 Wins =>
playerWins <= '1'; -- draws fancy end screen
state <= s idle;

>

when s P2 Wins
playerLoses <= '1'; -- draws fancy end screen
state <= s idle;

-- Shouldn't get here
when others =>

state <= s _idle;
end case;
end if;
end process;

end architecture;

2.4 BALL CONTROL.vhd
library ieee;
use ieee.std logic 1164.all;
use ieee.numeric std.all;
library work;
use work.PONG PACKAGE.all;
entity BALL CONTROL is
port (

CLK : in std logic;
GAME_STARTED : in std logic;

COL COUNT DIV : in std logic vector(5 downto 0);
ROW_COUNT DIV : in std logic vector(5 downto O);
DRAW BALL : out std logic;

BALL X : out std logic vector(5 downto 0);
BALL Y : out std logic vector(5 downto 0);

BALL UPDATED : out std logic
);

end entity;

architecture arch of BALL CONTROL is

signal colIndex : integer range 0 to 2 ** COL COUNT DIV'length :
signal rowIndex : integer range 0 to 2 ** ROW COUNT DIV'length :

signal ballCount : integer range 0 to c ballSpeed := 0;

11
Active-HDL Student Edition

Active-HDL Student Edition

signal ballX : integer range 0 to 2 ** COL COUNT DIV'length := 0
signal bally : integer range 0 to 2 ** ROW _COUNT DIV'length := 0
signal ballXPrev : integer range 0 to 2 ** COL COUNT DIV'length := 0
signal ballYPrev : integer range 0 to 2 ** ROW COUNT DIV'length := 0
signal drawBall : std logic := '0';

begin
DRAW BALL <= drawBall;
BALL X <= std logic vector(to unsigned(ballX, BALL X'length));
BALL Y <= std logic vector(to unsigned(ballyY, BALL Y'length));
colIndex <= to integer(unsigned(COL COUNT DIV));
rowIndex <= to_integer(unsigned(ROW _COUNT DIV));
-- Move ball
process(CLK)
begin
if rising edge(CLK) then

-- Ball stays in middle of screen until game starts
if GAME_STARTED = 'O' then

ballX <= c gameWidth / 2;

ballY <= c gameHeight / 2;

ballXPrev <= c gameWidth / 2 + 1;

ballYPrev <= c gameHeight / 2 - 1;
else

-- Update ball counter
if ballCount = c ballSpeed then

ballCount <= 0;
BALL UPDATED <= '1°;
else
ballCount <= ballCount + 1;
BALL UPDATED <= '0°';
end if;
-- Control x position
if ballCount = c ballSpeed then
ballXPrev <= ballX;
-- If ball is moving to right, keep moving to right,
-- but check not at wall in which case bounces back
if ballXPrev < ballX then
if ballX = c_gameWidth - 1 then
ballX <= ballX - 1;

12
Active-HDL Student Edition

~E s~

Active-HDL Student Edition

else
ballX <= ballX + 1;
end if;

-- Ball moving to left
elsif ballXPrev > ballX then

if ballX = 0 then
ballX <= ballX + 1;
else
ballX <= ballX - 1;
end if;
end if;

end if;

-- Control y position
if ballCount = c ballSpeed then

ballYPrev <= bally;

-- If ball is moving up, keep moving up,

-- but check not at wall in which case bounces back
if ballYPrev < ballY then

if ballY = c gameHeight - 1 then
ballYy <= bally - 1;

else
ballY <= ballY + 1;

end if;

-- Ball moving down
elsif ballYPrev > ballY then

if ballY = 0 then

ballY <= ballY + 1;

else
ballY <= bally - 1;

end if;

end if;
end if;
end if;
end if;

13
Active-HDL Student Edition

Active-HDL Student Edition
end process;
-- Draw ball

process(CLK)

begin

if rising edge(CLK) then

if colIndex =

drawBall <=

else

drawBall <=

end if;
end if;
end process;

end architecture;

2.5 DRAW_LOSE_SCREEN.vhd

library ieee;

ballX and rowIndex = ballY then

|1|;

IOI;

use ieee.std logic 1164.all;
use ieee.numeric std.all;

library work;

use work.PONG PACKAGE.all;

entity DRAW LOSE_ SCREEN is

port (
CLK :in
PLAYER LOST : in

COL COUNT DIV : in
ROW_COUNT DIV : in

std logic;
std logic;
std logic vector(5 downto 0);
std logic vector(5 downto 0);

DRAW_LOSE : out std logic

);
end entity;

architecture arch of DRAW_LOSE SCREEN is

signal collIndex : integer range 0 to 2 ** COL COUNT DIV'length :
signal rowIndex : integer range 0 to 2 ** ROW_COUNT DIV'length :

0;
0;

type pixels is array(0 to c_gameHeight - 1) of std logic vector(0 to

_gameWidth - 1);
signal pixel : pixels;

Active-HDL Student Edition

14

www.jk-quantized.com

Active-HDL Student Edition
begin

-- Screen setup

pixel(0) <= "00";
pixel(l) <= "00";
pixel(2) <= "00";
pixel(3) <= "00";
pixel(4) <= "00" ;

pixel(5) <= "00" ;
pixel(6) <= "00";
pixel(7) <= "0000001111100111110010001000111110000000";
pixel(8) <= "0000001000000100010011011000100000000000";
pixel(9) <= "0000001000000100010010101000100000000000";
pixel(10) <= "0000001000000100010010001000111100000000";
pixel(11l) <= "0000001111100111110010001000100000000000";
pixel(12) <= "0000001000100100010010001000100000000000";
pixel(13) <= "0000001000100100010010001000100000000000";
pixel(14) <= "0000001111100100010010001000111110000000";
pixel(15) <= "00" ;
pixel(16) <= "00" ;
pixel(17) <= "00" ;
pixel(18) <= "0000001111100100010011111000111110000000";
pixel(19) <= "0000001000100100010010000000100010000000";
pixel(20) <= "0000001000100100010010000000100010000000" ;
pixel(21) <= "0000001000100100010011111000111110000000";
pixel(22) <= "0000001000100010100010000000110000000000";
pixel(23) <= "0000001000100010100010000000101000000000" ;
pixel(24) <= "0000001000100001000010000000100100000000";
pixel(25) <= "0000001111100001000011111000100010000000";
pixel(26) <= "00" ;
pixel(27) <= "00" ;
pixel(28) <= "00" ;
pixel(29) <= "00" ;

colIndex <= to integer(unsigned(COL COUNT DIV));
rowIndex <= to integer(unsigned(ROW _COUNT DIV));

-- Draw screen
process(CLK)

begin
if rising edge(CLK) then
if PLAYER LOST = '1' and pixel(rowIndex)(colIndex) = '1' then
DRAW LOSE <= '1';
else
DRAW LOSE <= '0';
end if;
end if;
end process;

end architecture;

15
Active-HDL Student Edition

Active-HDL Student Edition
2.6 DRAW_WIN_SCREEN.vhd

-- www.jk-quantized.com

library
use
use

library
use

ieee;

ieee.std_logic_1164.all;
ieee.numeric std.all;

work;

work .PONG_PACKAGE.all;
entity DRAW WIN SCREEN is

port (
CLK : in std logic;
PLAYER WON : in std logic;

);

COL_COUNT DIV : in
ROW_COUNT DIV : in

DRAW_WIN

end entity;
architecture arch of DRAW WIN SCREEN is

std logic vector(5 downto 0);
std logic vector(5 downto 0);

: out std logic

signal collIndex :
signal rowIndex :

integer range 0 to 2 ** COL_COUNT DIV'length :
integer range 0 to 2 ** ROW_COUNT DIV'length :

0;
0;

type pixels is array(0 to c_gameHeight - 1) of std logic vector(0 to c
_gameWidth - 1);

signal pixel : pixels;
begin

-- Screen setup

pixel(0) <= "00";
pixel(l) <= "00";
pixel(2) <= "00";
pixel(3) <= "00";
pixel(4) <= "00";
pixel(5) <= "00";
pixel(6) <= "00";
pixel(7) <= "0000000100011111000011111000111110000000";
pixel(8) <= "0000000100000100000010000000100000000000";
pixel(9) <= "0000000100000100000010000000100000000000";
pixel(10) <= "0000000100000100000011111000111100000000";
pixel(1ll) <= "0000000100000100000000001000100000000000";
pixel(12) <= "0000000100000100000000001000100000000000";
pixel(13) <= "0000000100000100000000001000100000000000";
pixel(14) <= "0000000100000100000011111000111110000000";
pixel(15) <= "00";
pixel(16) <= "00";
pixel(1l7) <= "00" ;
pixel(18) <= "0000000001000100000000010000000000000000";
pixel(19) <= "0000000001000100000000010000000000000000";
pixel(20) <= "0000000001000100000000010000000000000000";
pixel(21) <= "0000000001111100111110010000000000000000";
pixel(22) <= "0000000000000100000000010000000000000000";
pixel(23) <= "0000000000000100000000010000000000000000";
pixel(24) <= "0000000000000100000000010000000000000000";

16

Active-HDL Student Edition

www.jk-quantized.com

Active-HDL Student Edition

pixel(25) <=
pixel(26) <=
pixel(27) <=
pixel(28) <=
pixel(29) <=

colIndex <=
rowIndex <=

-- Draw scre
process(CLK

begin
if risin

if P

else

end
end if;
end process;

end architecture

"0000000000000100000000010000000000000000" ;
"00" ;
*00" ;
"00" ;
"00" ;

to _integer(unsigned(COL COUNT DIV));
to integer(unsigned(ROW _COUNT DIV));

en

)
g edge(CLK) then
LAYER WON = '1' and pixel(rowIndex)(colIndex) =
DRAW WIN <= '1°';
DRAW WIN <= '0';

if;

’

2.7 PADDLE_CONTROL.vhd

library ieee;

use ieee.std logic 1164.all;

use ieee.num
library work;

use work.PON
entity PADDLE CO

generic (

g PADDLE
g_PADDLE
);

port (
CLK : in

COL COUN
ROW_COUN

uP i
DOWN : i

DRAW_PAD

eric std.all;
G_PACKAGE.all;

NTROL is

X : integer;

~HEIGHT : integer

std logic;

T DIV : in std logic vector(5 downto 0);
T DIV : in std logic vector(5 downto 0);

n std logic;
n std logic;

DLE : out std logic;

17

Active-HDL Student Edition

Active-HDL Student Edition
PADDLE Y : out std logic vector(5 downto 0)

end entity;
architecture arch of PADDLE CONTROL is

signal collIndex : integer range 0 to 2 ** COL COUNT DIV'length :
signal rowIndex : integer range 0 to 2 ** ROW_COUNT DIV'length

signal paddleCount enable : std logic;
signal paddleCount : integer range 0 to c paddleSpeed := 0;

signal paddleY : integer range 0 to c _gameHeight - g PADDLE HEIGHT - 1 :=
0;

signal drawPaddle : std logic := '0°';
begin

DRAW PADDLE <= drawPaddle;
PADDLE Y <= std logic vector(to unsigned(paddleY, PADDLE Y'length));

colIndex <= to integer(unsigned(COL COUNT DIV));
rowIndex <= to integer(unsigned(ROW_COUNT DIV));

-- Move paddle only when one button is pressed
paddleCount enable <= UP xor DOWN;
-- Move paddle
process(CLK)
begin
if rising edge(CLK) then

-- Update paddle counter when either switch is pressed and held
if paddleCount enable = '1' then

if paddleCount = c paddleSpeed then
paddleCount <= 0;
else
paddleCount <= paddleCount + 1;
end if;
else
paddleCount <= 0;
end if;
-- Update paddle location
if UP = '1' and paddleCount = c_paddleSpeed then

-- If already at top, don't update
if paddleY /= 0 then

18
Active-HDL Student Edition

Active-HDL Student Edition
paddleY <= paddleY - 1;
end if;
elsif DOWN = '1' and paddleCount = c_paddleSpeed then

-- If already at bottom, don't update
if paddleY /= c _gameHeight - g PADDLE HEIGHT - 1 then

paddleY <= paddleY + 1;
end if;
end if;
end if;
end process;
-- Draw paddle
process(CLK)
begin
if rising edge(CLK) then
if (colIndex = g PADDLE X and
rowIndex >= paddleY and
rowIndex <= paddleY + g PADDLE HEIGHT)
then
drawPaddle <= '1°';
else
drawPaddle <= '0°';
end if;
end if;
end process;

end architecture;

2.8 PONG_PACKAGE.vhd

-- https://

library ieee;
use ieee.std logic 1164.all;
use ieee.numeric std.all;

package PONG PACKAGE is

-- Set width and height of game board
-- Note also have to change col/rowCountDiv accordingly in PONG TOP.vhd

19
Active-HDL Student Edition

www.nandland.com/goboard/pong-game-in-fpga-with-go-board-vga.html

Active-HDL Student Edition

constant c gameWidth : integer := 40;
constant c _gameHeight : integer := 30;
-- Set score target

constant c scoreLimit : integer := 5;

-- Set height (in board game units) of paddle
constant ¢ Pl paddleHeight : integer := 6;
constant ¢ P2 paddleHeight : integer

c_gameWidth;

-- Set speed of paddle movement.

-- In this case, paddle moves one board game unit every 50ms
- - that button is held down (assuming a 25MHz clock)
constant c paddleSpeed : integer := 1250000;

-- Set speed of ball movement.

-- In this case, ball moves one board game unit every 50ms
- - (assuming a 25MHz clock)

constant c ballSpeed : integer := 1250000;

-- Set column index to draw player paddles
constant c_Pl paddleColPos : integer := 0;
constant ¢ P2 paddleColPos : integer := c_gameWidth - 1;

end package;

2.9 Sync_To_Count.vhd

-- https://youtu.be/7wjTIivsNMM

library ieee;

use ieee.std_logic_1164.all;
use ieee.numeric std.all;
--use work.all;

entity Sync To Count is
generic (

TOTAL COLS : integer;
TOTAL _ROWS : integer
);

port (

CLK : in std logic;
i HSYNC : in std loglc,
i VSYNC : in std logic;

o HSYNC : out std logic;
0 VSYNC : out std logic;
COL COUNT : out std logic vector(9 downto 0);
ROW _COUNT : out std logic vector(9 downto 0)
)i
end entity;

architecture arch of Sync To Count is

signal vsync : std logic :
signal hsync : std logic :

|0|;
lol;

20
Active-HDL Student Edition

http://www.nandland.com

Active-HDL Student Edition
signal framestart : std logic;

(others => '0"');

signal colCount : unsigned(9 downto 0) ;
(others => '0');

signal rowCount : unsigned(9 downto 0)

begin

-- Looking for rising edge on vertical sync to reset counters
framestart <= '1' when vsync = '0' and i VSYNC = '1' else '0';

0 VSYNC <= vsync;
0 HSYNC <= hsync;

ROW COUNT <= std logic vector(rowCount);
COL _COUNT <= std logic vector(colCount);

-- Register syncs to align with output data
process(CLK)

begin
if rising edge(CLK) then

vsync <= i VSYNC;
hsync <= i HSYNC;

end if;
end process;

-- Keep track of row/column counters
process(CLK)

begin
if rising edge(CLK) then
if framestart = '1' then

colCount <= (others => '0');
rowCount <= (others => '0');

else
A if colCount = to unsigned(TOTAL COLS - 1, colCount'length)
then
colCount <= (others => '0');
if rowCount = to unsigned(TOTAL ROWS - 1, rowCount'lengt
h) then

rowCount <= (others => '0');
else
rowCount <= rowCount + 1;
end if;
else

colCount <= colCount + 1;

21
Active-HDL Student Edition

Active-HDL Student Edition
end if;
end if;
end if;
end process;

end architecture;

2.10 VGA_Sync_Porch.vhd

library ieee;

use ieee.std logic 1164.all;
use ieee.numeric std.all;
--use work.all;

entity VGA Sync_Porch is
generic (

VIDEO WIDTH : integer;
TOTAL COLS : integer;
TOTAL ROWS : integer;
ACTIVE COLS : integer;
) ACTIVE ROWS : integer

port (
CLK : in std logic;
i HSYNC : in std logic;
i VSYNC : in std logic;

i RED VIDEO : in std logic vector(VIDEO WIDTH - 1 downto 0);
i GRN VIDEO : in std logic vector(VIDEO WIDTH - 1 downto 0);
i BLU VIDEO : in std logic vector(VIDEO WIDTH - 1 downto 0);

0 HSYNC : out std logic;

0 VSYNC : out std logic;

o RED VIDEO : out std logic vector(VIDEO WIDTH - 1 downto 0);

0 GRN VIDEO : out std logic vector(VIDEO WIDTH - 1 downto 0O);
\ o BLU VIDEO : out std logic vector(VIDEO WIDTH - 1 downto 0O)

end entity;

architecture arch of VGA Sync Porch is

constant frontPorchHorz : integer := 18;
constant backPorchHorz : integer := 50;
constant frontPorchVert : integer := 10;
constant backPorchVert : integer := 33;

signal w_hsync : std logic;
signal w vsync : std logic;
signal r _hsync : std logic :
signal r_vsync : std logic :

IGI;
|0|;

signal colCount : std logic vector(9 downto 0);
signal rowCount : std logic vector(9 downto 0);

22
Active-HDL Student Edition

Active-HDL Student Edition

s = '0'

s => IOI).

signal redVideo : std logic vector(VIDEO WIDTH - 1 downto O) := (other
signal'grnVideo : std logic vector(VIDEO WIDTH - 1 downto O) := (other
signal'bluVideo : std logic vector(VIDEO WIDTH - 1 downto O) := (other

s =>"'0");

component Sync To Count 1is

generic (

TOTAL_COLS :
) TOTAL_ROWS :

port(

CLK : in
i HSYNC : in
i VSYNC : in

0 _HSYNC
o VSYNC
COL COUNT :
) ROW_COUNT :

end component;
begin

0 HSYNC <= r_hsync;
0 VSYNC <= r_vsync;

integer;
integer

std logic;
std logic;
std logic;

: out std logic;
: out std logic;
out std logic vector(9 downto 0);
out std logic vector(9 downto 0)

sync_inst : Sync To Count

generic map (

TOTAL_COLS,
) TOTAL_ROWS

port map (

CLK,
i HSYNC,
i VSYNC,

w_hsync,
w_vsync,
colCount,
rowCount

);

-- Modify HSync and VSync signals to include front/back porch

process(CLK)

begin

if rising edge(CLK) then

if (to_integer(unsigned(colCount)) < frontPorchHorz + ACTIVE

_COLS or

Active-HDL Student Edition

23

Active-HDL Student Edition

to integer(unsigned(colCount)) > TOTAL COLS - backPorchH
orz - 1) then

r hsync <= '1';
else
r hsync <= w_hsync;
end if;
if (to_integer(unsigned(rowCount)) < frontPorchVert + ACTIVE
ROWS or to_integer(unsigned(rowCount)) > TOTAL ROWS - backPorchV
ert - 1) then
r vsync <= '1°';
else
r_Vsync <= wW_VSYNnc;
end if;
end if;
end process;
-- Align input video to modifier synch pulses (2 clock cycles of delay)
process(CLK)
begin
if rising edge(CLK) then
redVideo <= i RED VIDEO;
grnVideo <= i GRN VIDEO;
bluvideo <= i BLU VIDEO;
o RED VIDEO <= redVideo;
0o GRN VIDEQ <= grnVideo;
o BLU VIDEO <= bluVideo;
end if;
end process;

end architecture;

24
Active-HDL Student Edition

	1 Table of Contents
	2 PONG
	2.1 PONG.vhd
	2.2 VGA_Sync_Pulses.vhd
	2.3 PONG_TOP.vhd
	2.4 BALL_CONTROL.vhd
	2.5 DRAW_LOSE_SCREEN.vhd
	2.6 DRAW_WIN_SCREEN.vhd
	2.7 PADDLE_CONTROL.vhd
	2.8 PONG_PACKAGE.vhd
	2.9 Sync_To_Count.vhd
	2.10 VGA_Sync_Porch.vhd

